Learn More
Loss of muscle mass occurs in a variety of diseases including cancer, chronic heart failure, AIDS, diabetes, and renal failure, often aggravating pathological progression. The atrophy process is controlled by a transcriptional program that regulates the expression of a subset of genes named atrophy-related genes. The Forkhead Box O (FoxO) family of(More)
Autophagy is crucial in the turnover of cell components, and clearance of damaged organelles by the autophagic-lysosomal pathway is essential for tissue homeostasis. Defects of this degradative system have a role in various diseases, but little is known about autophagy in muscular dystrophies. We have previously found that muscular dystrophies linked to(More)
Cardiomyocyte proteostasis is mediated by the ubiquitin/proteasome system (UPS) and autophagy/lysosome system and is fundamental for cardiac adaptation to both physiologic (e.g., exercise) and pathologic (e.g., pressure overload) stresses. Both the UPS and autophagy/lysosome system exhibit reduced efficiency as a consequence of aging, and dysfunction in(More)
Autophagy is a catabolic process that provides the degradation of altered/damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagic flux is fundamental for the homeostasis of skeletal muscles in physiological conditions and in response to stress. Defective as well as excessive autophagy is detrimental(More)
AIMS Increased cardiac sympathetic neuron (SN) activity has been associated with pathologies such as heart failure and hypertrophy, suggesting that cardiac innervation regulates cardiomyocyte trophism. Whether continuous input from the SNs is required for the maintenance of the cardiomyocyte size has not been determined thus far. METHODS AND RESULTS To(More)
BACKGROUND Oxidative stress (OS) plays a major role on tissue function. Several catabolic or stress conditions exacerbate OS, inducing organ deterioration. Haptoglobin (Hp) is a circulating acute phase protein, produced by liver and adipose tissue, and has an important anti-oxidant function. Hp is induced in pro-oxidative conditions such as systemic(More)
Sarcopenia, the progressive loss of muscle mass and strength, is a phenomenon characterizing human aging whose etiology is still not clear. While there is increasing evidence for the influence of inter-muscular adipose tissue infiltration in the development of sarcopenia, much less is known about a possible role for intra-muscular triglycerides (IMTG). IMTG(More)
Bile acids (BAs) are cholesterol derivatives that regulate lipid metabolism, through their dual abilities to promote lipid absorption and activate BA receptors. However, different BA species have varying abilities to perform these functions. Eliminating 12α-hydroxy BAs in mice via Cyp8b1 knockout causes low body weight and improved glucose tolerance. The(More)
  • 1