Enrico Anlauf

Learn More
The peripheral astrocyte process (PAP) preferentially associates with the synapse. The PAP, which is not found around every synapse, extends to or withdraws from it in an activity-dependent manner. Although the pre- and postsynaptic elements have been described in great molecular detail, relatively little is known about the PAP because of its difficult(More)
astrocytes, including all cells of the astroglial family (1), i.e., Bergmann glia, Müller cells (2), tanycytes (3), and ependymal cells. The star shaped morphology from classical silver impregnations relates to cortical and hippocampal astrocytes, which display a comparable pattern in material stained for GFAP. However, the dense population of GS stained(More)
Physiological evidence has demonstrated that cultured astrocytes can release glutamate via Ca2+-dependent mechanisms. Also, glutamate released from astrocytes in the hippocampal slice interferes with synaptic neurotransmission. Since these observations suggest vesicular glutamate release from astrocytes, the presence of glutamate-containing exocytosis(More)
Studying the distribution of astrocytic antigens is particularly hard when they are localized in their fine, peripheral astrocyte processes (PAPs), since these processes often have a diameter comparable to vesicles and small organelles. The most appropriate technique is immunoelectron microscopy, which is, however, a time-consuming procedure. Even in high(More)
Amongst several forms of glia-neuronal communication, glia-synaptic interaction appears particularly interesting in the light of the well-known examples of two-way signaling between neurons and astrocytes. We review recent structural and physiological evidence showing that the structural correlate of glia-synaptic interaction is the peripheral astrocyte(More)
We have determined practical requirements for antigen colocalization on subcellular structures. The calibration standards used were 175-nm fluorescent microspheres and microtubules (approximately 255 nm) in cultured astrocytes. The colocalization problem became apparent with detection of anti-alpha-tubulin labelling in three colour channels, when images(More)
  • 1