Enric Martí

Learn More
The recognition of symbols in graphic documents is an intensive research activity in the community of pattern recognition and document analysis. A key issue in the interpretation of maps, engineering drawings, diagrams, etc. is the recognition of domain dependent symbols according to a symbol database. In this work we first review the most outstanding(More)
A through description of the left ventricle functionality requires combining complementary regional scores. A main limitation is the lack of multiparametric normality models oriented to the assessment of regional wall motion abnormalities (RWMA). This paper covers two main topics involved in RWMA assessment. We propose a general framework allowing the(More)
We describe a general framework for the recognition of distorted images of lineal shapes, which relies on three items: a model to represent lineal shapes and their deformations, a model for the generation of distorted binary images and the combination of both models in a common probabilistic framework, where the generation of deformations is related to an(More)
We describe a method for hand-drawn symbol recognition based on deformable template matching able to handle uncertainty and imprecision inherent to hand-drawing. Symbols are represented as a set of straight lines and their deformations as geometric transformations of these lines. Matching, however, is done over the original binary image to avoid loss of(More)
Hand-drawn symbols can take many different and distorted shapes from their ideal representation. Then, very jlexible methods are needed to be able to handle uncon-strained drawings. We propose here to extend our previous work in hand-drawn symbol recognition based on a bayesian fi-amework and deformable template matching. This approach gets jexibility(More)