Learn More
Specification of the non-skeletogenic mesoderm (NSM) in sea urchin embryos depends on Delta signaling. Signal reception leads to expression of regulatory genes that later contribute to the aboral NSM regulatory state. In oral NSM, this is replaced by a distinct oral regulatory state in consequence of Nodal signaling. Through regulome wide analysis we(More)
The current gene regulatory network (GRN) for the sea urchin embryo pertains to pregastrular specification functions in the endomesodermal territories. Here we extend gene regulatory network analysis to the adjacent oral and aboral ectoderm territories over the same period. A large fraction of the regulatory genes predicted by the sea urchin genome project(More)
The Nodal signaling pathway is known from earlier work to be an essential mediator of oral ectoderm specification in the sea urchin embryo, and indirectly, of aboral ectoderm specification as well. Following expression of the Nodal ligand in the future oral ectoderm during cleavage, a sequence of regulatory gene activations occur within this territory which(More)
By gastrulation the ectodermal territories of the sea urchin embryo have developed an unexpectedly complex spatial pattern of sharply bounded regulatory states, organized orthogonally with respect to the animal/vegetal and oral/aboral axes of the embryo. Although much is known of the gene regulatory network (GRN) linkages that generate these regulatory(More)
The sea urchin oral ectoderm gene regulatory network (GRN) model has increased in complexity as additional genes are added to it, revealing its multiple spatial regulatory state domains. The formation of the oral ectoderm begins with an oral-aboral redox gradient, which is interpreted by the cis-regulatory system of the nodal gene to cause its expression on(More)
Although Methanocaldococcus (Methanococcus) jannaschii was the first archaeon to have its genome sequenced, little is known about the promoters of its protein-coding genes. To expand our knowledge, we have experimentally identified 131 promoters for 107 protein-coding genes in this genome by mapping their transcription start sites. Compared to previously(More)
Animal development is an elaborate process programmed by genomic regulatory instructions. Regulatory genes encode transcription factors and signal molecules, and their expression is under the control of cis-regulatory modules that define the logic of transcriptional responses to the inputs of other regulatory genes. The functional linkages among regulatory(More)
The regulation of oral-aboral ectoderm specification in the sea urchin embryo has been extensively studied in recent years. The oral-aboral polarity is initially imposed downstream of a redox gradient induced by asymmetric maternal distribution of mitochondria. Two TGF-β signaling pathways, Nodal and BMP, are then respectively utilized in the generation of(More)
The trapezoidal ciliated band (CB) of the postgastrular sea urchin embryo surrounds the oral ectoderm, separating it from adjacent embryonic territories. Once differentiated, the CB is composed of densely arranged cells bearing long cilia that endow the larva with locomotion and feeding capability. The spatial pattern from which the CB will arise is first(More)
Wnt signaling affects cell-fate specification processes throughout embryonic development. Here we take advantage of the well-studied gene regulatory networks (GRNs) that control pregastrular sea urchin embryogenesis to reveal the gene regulatory functions of the entire Wnt-signaling system. Five wnt genes, three frizzled genes, two secreted frizzled-related(More)