Learn More
Genetic algorithms (GA) are one of the most successful techniques in solving combinatorial optimization problems. Its general character has enabled its application to different types of problems: vehicle routing, planning, scheduling, etc. This article shows that there is controversy in the basic structure of the algorithm steps when it is applied at(More)
In this paper, a new multiple population based meta-heuristic to solve combinatorial optimization problems is introduced. This meta-heuristic is called Golden Ball (GB), and it is based on soccer concepts. To prove the quality of our technique, we compare its results with the results obtained by two different Genetic Algorithms (GA), and two Distributed(More)
Nowadays, the development of new metaheuristics for solving optimization problems is a topic of interest in the scientific community. In the literature, a large number of techniques of this kind can be found. Anyway, there are many recently proposed techniques, such as the artificial bee colony and imperialist competitive algorithm. This paper is focused on(More)
In this paper, we describe a new meta-heuristic to solve routing problems. This meta-heuristic is called Golden Ball (GB), and it is based on soccer concepts. To prove its quality we apply it to the Vehicle Routing Problem with Backhauls (VRPB) and we compare its results with the results obtained by a basic Genetic Algorithm (GA) and an Evolutionary(More)
Bat algorithm is a population metaheuristic proposed in 2010 which is based on the echolocation or bio-sonar characteristics of microbats. Since its first implementation, the bat algorithm has been used in a wide range of fields. In this paper, we present a discrete version of the bat algorithm to solve the well-known symmetric and asymmetric traveling(More)
Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout(More)
We propose a multi-crossover and adaptive island based population algorithm (MAIPA). This technique divides the entire population into subpopulations, or demes, each with a different crossover function, which can be switched according to the efficiency. In addition, MAIPA reverses the philosophy of conventional genetic algorithms. It gives priority to the(More)
Throughout the history, Genetic Algorithms (GA) have been widely applied to a broad range of combinatorial optimization problems. Its easy applicability to areas such as transport or industry has been one of the reasons for its great success. In this paper, we propose a new Adaptive Multi-Crossover Population Algorithm (AMCPA). This new technique changes(More)
This short note presents a discussion arisen after reading ”Development a new mutation operator to solve the Traveling Salesman Problem by aid of Genetic Algorithms”, by Murat Albayrak and Novruz Allahverdi, (2011). Expert System with Applications (38)(pp. 1313-1320). The discussed paper presents a new greedy mutation operator to solve the well-known(More)