Endler M Borges

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
Free silanols on the surface of silica are the "villains", which are responsible for detrimental interactions of those compounds and the stationary phase (i.e., bad peak shape, low efficiency) as well as low thermal and chemical stability. For these reasons, we began this review describing new silica and hybrid silica stationary phases, which have reduced(More)
Complex analyses of polar compounds, especially basic ones, require more selective stationary phases. The present paper describes a stationary phase prepared by thermal immobilization of poly(methyltetradecylsiloxane) onto chromatographic silica (PMTDS-SiO(2)). This stationary phase presents hydrophobic and ion-exchange interactions that confer both high(More)
Three RP-LC column characterization protocols [Tanaka et al. (1989), Snyder et al. (PQRI, 2002), and NIST SRM 870 (2000)] were evaluated using both Euclidian distance and Principal Components Analysis to evaluate effectiveness at identifying equivalent columns. These databases utilize specific chromatographic properties such as hydrophobicity, hydrogen(More)
The effects of mobile phase pH, temperature, buffer type and buffer concentration on the selectivity and stability of four stationary phases, with different PMOS loadings, prepared by the thermal immobilization of poly(methyloctylsiloxane) on to silica (PMOS-SiO₂), were evaluated with both hydrophobic and hydrophilic basic solutes. These solutes show longer(More)
In the first part of this review, stationary phases (silica, hybrid silica, hydride silica and non-silica stationary phases) were characterized and compared with respect to selectivity, efficiency, resolution, solvent consumption and analysis time. The present review focuses on the thermal and chemical stability of stationary phases. Stationary phases of(More)
Mobile phase pH and temperature are major factors in determining retention, selectivity and chromatographic performance of ionizable compounds. This imposes a requirement that stationary phases must ideally be stable in both acidic and basic conditions coupled with good thermal stability, in order to be able to chromatograph these compounds in either their(More)
Stationary-phase evaluation in reversed-phase liquid chromatography (RP-LC) is not a straightforward process. A number of tests to characterize and classify stationary phases have been suggested. The results of these various tests, however, do not always describe the real properties of the stationary phase. This study critically compares several tests for(More)
Variations of a thermal immobilization procedure using poly(methyltetradecilsiloxane) and silica produced fourteen stationary phases with carbon contents of 4-18%. The stationary phases were chromatographically evaluated with the Engelhardt, SRM 870 and Tanaka tests. Classifications using USP and Euerby procedures indicate that the new immobilized phases(More)
The chromatographic behaviors of some basic solutes were evaluated on stationary phases based on poly(methyloctylsiloxane) immobilized onto silica (PMOS-SiO(2)). The test solutes present both hydrophobic and hydrophilic properties. Evaluations of the pH effect used 80:20 v/v methanol/buffered mobile phase over the pH range of 5-11.5 with inorganic buffers(More)
A novel stationary phase prepared by the thermal immobilization of poly(dimethylsiloxane) onto the surface of silica (PDMS-SiO(2)) has been described, evaluated and compared with 229 commercially available RP-LC stationary phases using the Tanaka column classification protocol. The phase exhibited many unique chromatographic properties and, based on the(More)
  • 1