• Citations Per Year
Learn More
Free-standing, high-capacity Li2 S electrodes with capacity loadings in the range from 1.5 to 3.8 mA h cm(-2) are produced by using infiltration of active materials into porous carbonized biomass sheets. The proposed electrode design can be effectively utilized for the low-cost fabrication of flexible lithium batteries with high specific energy.
Phosphorus (P) is an abundant element that exhibits one of the highest gravimetric and volumetric capacities for Li storage, making it a potentially attractive anode material for high capacity Li-ion batteries. However, while phosphorus carbon composite anodes have been previously explored, the influence of the inactive materials on electrode cycle(More)
We report for the first time a solution-based synthesis of strongly coupled nanoFe/multiwalled carbon nanotube (MWCNT) and nanoNiO/MWCNT nanocomposite materials for use as anodes and cathodes in rechargeable alkaline Ni-Fe batteries. The produced aqueous batteries demonstrate very high discharge capacities (800 mAh gFe(-1) at 200 mA g(-1) current density),(More)
Lithium sulfide (Li2S) with a high theoretical specific capacity of 1166mAh g(-1) is a promising cathode material for next-generation Li-S batteries with high specific energy. However, low conductivity of Li2S and polysulfide dissolution during cycling are known to limit the rate performance and cycle life of these batteries. Here, we report on the(More)
The computational complexity of a texture classification algorithm is limited by the dimensionality of the feature space. A feature selection algorithm that can reduce the dimensionality of problem is often desirable, which has been studied by many authors because of its impact on the complexity of classifiers, Furthermore, feature selection in high(More)
Porous carbons suffer from low specific capacitance, while intercalation-type active materials suffer from limited rate when used in asymmetric supercapacitors. We demonstrate that nanoconfinement of intercalation-type lithium titanate (Li4Ti5O12) nanoparticles in carbon nanopores yielded nanocomposite materials that offer both high ion storage density and(More)
  • 1