Emmanuelle Planus

Learn More
The invasiveness of cells is correlated with the presence of dynamic actin-rich membrane structures called invadopodia, which are membrane protrusions that are associated with localized polymerization of sub-membrane actin filaments. Similar to focal adhesions and podosomes, invadopodia are cell-matrix adhesion sites. Indeed, invadopodia share several(More)
Invadosomes are adhesion structures involved in tissue invasion that are characterized by an intense actin polymerization-depolymerization associated with β1 and β3 integrins and coupled to extracellular matrix (ECM) degradation activity. We induced the formation of invadosomes by expressing the constitutive active form of Src, SrcYF, in different cell(More)
In order to understand the sensitivity of alveolar macrophages (AMs) to substrate properties, we have developed a new model of macrophages cultured on substrates of increasing Young's modulus: (i) a monolayer of alveolar epithelial cells representing the supple (approximately 0.1 kPa) physiological substrate, (ii) polyacrylamide gels with two concentrations(More)
Invadosomes are adhesive mechanosensory modules composed of a dense F-actin core surrounded by a ring of adhesion molecules and able to infiltrate compact tissue environment in physiological and pathological conditions. These structures comprise podosomes that are found in a variety of cells under physiological conditions and invadopodia in transformed or(More)
We compare the measurements of viscoelastic properties of adherent alveolar epithelial cells by two micromanipulation techniques: (i) magnetic twisting cytometry and (ii) optical tweezers, using microbeads of same size and similarly attached to F-actin. The values of equivalent Young modulus E, derived from linear viscoelasticity theory, become consistent(More)
Type II pneumocytes are essential for repair of the injured alveolar epithelium. The effect of two MMP collagenases, MMP-1 and MMP-13 on alveolar epithelial repair was studied in vitro. The A549 alveolar epithelial cell line and primary rat alveolar epithelial cell cultures were used. Cell adhesion and cell migration were measured with and without exogenous(More)
Cell-matrix adhesions are essential for cell migration, tissue organization and differentiation, therefore playing central roles in embryonic development, remodeling and homeostasis of tissues and organs. Matrix adhesion-dependent signals cooperate with other pathways to regulate biological functions such as cell survival, cell proliferation, wound healing,(More)
Urokinase plasminogen activator and its receptor are both found at the surface of the cell membrane in many cell types. The plasminogen activator inhibitor type-1 (PAI-1) is often associated with the extracellular matrix. The spatial localization of these three molecules could account for their involvement in cell adhesion and/or migration. We have shown(More)
Respiratory tract lesions induced by the chemical warfare agent sulfur mustard (SM) are characterized by epithelial damages associated with inflammatory cell infiltration. Here we evaluated the imbalance between gelatinase and tissue inhibitors of metalloproteinases (TIMPs), and we tested pretreatment with the protease inhibitor doxycycline. Guinea pigs(More)
In this study we analyse the formation and dynamics of specific actin-rich structures called podosomes. Podosomes are very dynamic punctual adhesion sites tightly linked to the actin cytoskeleton. Mechanical properties of substrates are emerging as important physical modulators of anchorage-dependent processes involved in the cellular response. We(More)