Emmanuelle Mounetou

Learn More
The development of new anticancer agents with lower toxicity, higher therapeutic index, and weaker tendency to induce resistant phenotypes in tumor cells is a continuous challenge for the scientific community. Toward that end, we showed previously that a new class of soft alkylating agents designed as phenyl-3-(2-chloroethyl)ureas (CEUs) inhibits tumor cell(More)
The triple negative basal-like (TNBL) breast carcinoma is an aggressive and unfavorable prognosis disease. Inhibitors of poly(ADP-ribose) polymerase such as Olaparib could represent a promising targeted therapy but their sensitivity against Multidrug Resistance proteins (MDR), which causes resistance, is not well defined. Thus, our work focused on the(More)
The antitumoral profile of the microtubule disrupter N-(4-iodophenyl)-N'-(2-chloroethyl)urea (ICEU) was characterised in vitro and in vivo using the CT-26 colon carcinoma cell line, on the basis of the drug uptake by the cells, the modifications of cell cycle, and beta-tubulin and lipid membrane profiles. N-(4-iodophenyl)-N'-(2-chloroethyl)urea exhibited a(More)
The exposure of cells to O6-benzyl-N2-acetylguanosine (BNAG) and several guanine derivatives is known to reduce the activity of O6-alkylguanine-DNA alkyltransferase (MGMT) and to enhance the sensitivity of Mer+ (methyl enzyme repair positive) tumour cells to chloroethylnitrosoureas (CENUs) in vitro and in vivo. High water solubility and the pharmacokinetic(More)
  • 1