Emmanuelle Lauber

Learn More
Legumes can enter into symbiotic relationships with both nitrogen-fixing bacteria (rhizobia) and mycorrhizal fungi. Nodulation by rhizobia results from a signal transduction pathway induced in legume roots by rhizobial Nod factors. DMI3, a Medicago truncatula gene that acts immediately downstream of calcium spiking in this signaling pathway and is required(More)
Sinorhizobium meliloti is an alpha-proteobacterium that alternates between a free-living phase in bulk soil or in the rhizosphere of plants and a symbiotic phase within the host plant cells, where the bacteria ultimately differentiate into nitrogen-fixing organelle-like cells, called bacteroids. As a step toward understanding the physiology of S. meliloti(More)
TonB-dependent receptors (TBDRs) are outer membrane proteins mainly known for the active transport of iron siderophore complexes in Gram-negative bacteria. Analysis of the genome of the phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc), predicts 72 TBDRs. Such an overrepresentation is common in Xanthomonas species but is limited to only(More)
The Xanthomonadaceae family contains two xylem-limited plant pathogenic bacterial species, Xanthomonas albilineans and Xylella fastidiosa. X. fastidiosa was the first completely sequenced plant pathogen. It is insect-vectored, has a reduced genome and does not possess hrp genes which encode a Type III secretion system found in most plant pathogenic(More)
RNAs 1 and 2 of beet necrotic yellow vein virus (BNYVV) carry the functions enabling viral RNA replication, cell-to-cell movement, virus assembly and vascular movement of the virus in the systemic host Spinacea oleracea. In Beta macrocarpa, on the other hand, BNYVV RNA 3 is required for vascular movement. Replication-competent RNA 3 transcripts carrying(More)
Cell-to-cell movement of beet necrotic yellow vein virus (BNYVV) requires three proteins encoded by a triple gene block (TGB) on viral RNA 2. A BNYVV RNA 3-derived replicon was used to express movement proteins to functionally substitute for the BNYVV TGB proteins was tested by coinoculation of TGB-defective BNYVV with the various replicons to Chenopodium(More)
Ralstonia solanacearum GMI1000 is a gram-negative plant pathogen which contains an hrp gene cluster which codes for a type III protein secretion system (TTSS). We identified two novel Hrp-secreted proteins, called PopF1 and PopF2, which display similarity to one another and to putative TTSS translocators, HrpF and NopX, from Xanthomonas spp. and rhizobia,(More)
SUMMARY The cruciferous weed Arabidopsis thaliana and the causal agent of black rot disease of Crucifers Xanthomonas campestris pv. campestris (Xcc) are both model organisms in plant pathology. Their interaction has been studied successfully in the past, but these investigations suffered from high variability. In the present study, we describe an improved(More)
How pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual Xanthomonas strains usually(More)
The bacterial species Xanthomonas campestris infects a wide range of Brassicaceae. Specific pathovars of this species cause black rot (pv. campestris), bacterial blight of stock (pv. incanae) or bacterial leaf spot (pv. raphani). In this study, we extended the genomic coverage of the species by sequencing and annotating the genomes of strains from pathovar(More)