Learn More
MOTIVATION Multifunctional proteins perform several functions. They are expected to interact specifically with distinct sets of partners, simultaneously or not, depending on the function performed. Current graph clustering methods usually allow a protein to belong to only one cluster, therefore impeding a realistic assignment of multifunctional proteins to(More)
Asf1 is a conserved histone chaperone implicated in nucleosome assembly, transcriptional silencing, and the cellular response to DNA damage. We solved the NMR solution structure of the N-terminal functional domain of the human Asf1a isoform, and we identified by NMR chemical shift mapping a surface of Asf1a that binds the C-terminal helix of histone H3.(More)
MOTIVATION Human Nbs1 and its homolog Xrs2 in Saccharomyces cerevisiae are part of the conserved MRN complex (MRX in yeast) which plays a crucial role in maintaining genomic stability. NBS1 corresponds to the gene mutated in the Nijmegen breakage syndrome (NBS) known as a radiation hyper-sensitive disease. Despite the conservation and the importance of the(More)
Small and large scale proteomic technologies are providing a wealth of potential interactions between proteins bearing phospho-recognition modules and their substrates. Resulting interaction maps reveal such a dense network of interactions that the functional dissection and understanding of these networks often require to break specific interactions while(More)
It was recently reported that the sizes of many mRNAs change when budding yeast cells exit mitosis and enter the meiotic differentiation pathway. These differences were attributed to length variations of their untranslated regions. The function of UTRs in protein translation is well established. However, the mechanism controlling the expression of distinct(More)
Moonlighting proteins are a subclass of multifunctional proteins whose functions are unrelated. Although they may play important roles in cells, there has been no large-scale method to identify them, nor any effort to characterize them as a group. Here, we propose the first method for the identification of 'extreme multifunctional' proteins from an(More)
Interactome networks represent sets of possible physical interactions between proteins. They lack spatio-temporal information by construction. However, the specialized functions of the differentiated cell types which are assembled into tissues or organs depend on the combinatorial arrangements of proteins and their physical interactions. Is(More)
Recent development of strategies using multiple sequence alignments (MSA) or profiles to detect remote homologies between proteins has led to a significant increase in the number of proteins whose structures can be generated by comparative modeling methods. However, prediction of the optimal alignment between these highly divergent homologous proteins(More)
This chapter focuses on the methods developed for the automatic or semiautomatic design of protein structures. We present several algorithms for the exploration of the sequence space and scoring of the designed models. There are now several successful designs that have been achieved using these approaches such as the stabilization of a protein fold, the(More)
The budding yeast Saccharomyces cerevisiae is a major model organism for important biological processes such as mitotic growth and meiotic development, it can be a human pathogen, and it is widely used in the food-, and biotechnology industries. Consequently, the genomes of numerous strains have been sequenced and a very large amount of RNA profiling data(More)