Emmanuel de Billy

Learn More
The cochaperone CDC37 promotes the association of HSP90 with the protein kinase subset of client proteins to maintain their stability and signalling functions. HSP90 inhibitors induce depletion of clients, which include several oncogenic kinases. We hypothesized that the targeting of CDC37 using siRNAs would compromise the maturation of these clients and(More)
The HSP90 molecular chaperone plays a key role in the maturation, stability and activation of its clients, including many oncogenic proteins. Kinases are a substantial and important subset of clients requiring the key cochaperone CDC37. We sought an improved understanding of protein kinase chaperoning by CDC37 in cancer cells. CDC37 overexpression in human(More)
Ovarian antral follicular development is clearly dependent on pituitary gonadotrophins FSH and LH. Although the endocrine mechanism that controls ovarian folliculogenesis leading to ovulation is quite well understood, the detailed mechanisms and molecular determinants in the different follicular compartments remain to be clarified. The aim of this study was(More)
Phenotypic screens, which focus on measuring and quantifying discrete cellular changes rather than affinity for individual recombinant proteins, have recently attracted renewed interest as an efficient strategy for drug discovery. In this article, we describe the discovery of a new chemical probe, bisamide (CCT251236), identified using an unbiased(More)
Heat shock factor 1 (HSF1) is a transcription factor that plays key roles in cancer, including providing a mechanism for cell survival under proteotoxic stress. Therefore, inhibition of the HSF1-stress pathway represents an exciting new opportunity in cancer treatment. We employed an unbiased phenotypic screen to discover inhibitors of the HSF1-stress(More)
The master regulator of the classical cytoprotective "heat shock" response, heat shock factor 1 (HSF1), is increasingly implicated in cancer pathogenesis, but the mechanisms remain poorly understood. A recent study connects increased protein translation to activation of HSF1 in malignant cells and demonstrates the therapeutic benefit of targeting this link.
  • 1