Emmanuel Verhille

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
We consider a conforming finite element approximation of the Reissner-Mindlin eigenvalue system, for which a robust a posteriori error estimator for the eigenvector and the eigenvalue errors is proposed. For that purpose, we first perform a robust a priori error analysis without strong regularity assumption. Upper and lower bounds are then obtained up to(More)
We consider a conforming finite element approximation of the Reissner-Mindlin system. We propose a new robust a posteriori error estimator based on H(div ) conforming finite elements and equilibrated fluxes. It is shown that this estimator gives rise to an upper bound where the constant is one up to higher order terms. Lower bounds can also be established(More)
  • 1