Emmanuel M. Pothos

Learn More
A quantum probability model is introduced and used to explain human probability judgment errors including the conjunction and disjunction fallacies, averaging effects, unpacking effects, and order effects on inference. On the one hand, quantum theory is similar to other categorization and memory models of cognition in that it relies on vector spaces defined(More)
Decisions about using addictive substances are influenced by distractions by addiction-related stimuli, of which the user might be unaware. The addiction-Stroop task is a paradigm used to assess this distraction. The empirical evidence for the addiction-Stroop effect is critically reviewed, and meta-analyses of alcohol-related and smoking-related studies(More)
We address the problem of predicting how people will spontaneously divide into groups a set of novel items. This is a process akin to perceptual organization. We therefore employ the simplicity principle from perceptual organization to propose a simplicity model of unconstrained spontaneous grouping. The simplicity model predicts that people would prefer(More)
The distinction between rules and similarity is central to our understanding of much of cognitive psychology. Two aspects of existing research have motivated the present work. First, in different cognitive psychology areas we typically see different conceptions of rules and similarity; for example, rules in language appear to be of a different kind compared(More)
Artificial grammar learning (AGL) is one of the most commonly used paradigms for the study of implicit learning and the contrast between rules, similarity, and associative learning. Despite five decades of extensive research, however, a satisfactory theoretical consensus has not been forthcoming. Theoretical accounts of AGL are reviewed, together with(More)
Two experimental tasks in psychology, the two-stage gambling game and the Prisoner's Dilemma game, show that people violate the sure thing principle of decision theory. These paradoxical findings have resisted explanation by classical decision theory for over a decade. A quantum probability model, based on a Hilbert space representation and Schrödinger's(More)
The authors examine the role of similarity in artificial grammar learning (AGL; A. S. Reber, 1989). A standard finite-state language was used to create stimuli that were arrangements of embedded geometric shapes (Experiment 1), connected lines (Experiment 2), and sequences of shapes (Experiment 3). Main effects for well-known predictors from the literature(More)
What makes a category seem natural or intuitive? In this paper, an unsupervised categorization task was employed to examine observer agreement concerning the categorization of nine different stimulus sets. The stimulus sets were designed to capture different intuitions about classification structure. The main empirical index of category intuitiveness was(More)
Classical (Bayesian) probability (CP) theory has led to an influential research tradition for modeling cognitive processes. Cognitive scientists have been trained to work with CP principles for so long that it is hard even to imagine alternative ways to formalize probabilities. However, in physics, quantum probability (QP) theory has been the dominant(More)
Categorization is one of the fundamental building blocks of cognition, and the study of categorization is notable for the extent to which formal modeling has been a central and influential component of research. However, the field has seen a proliferation of noncomplementary models with little consensus on the relative adequacy of these accounts. Progress(More)