Learn More
We study the following decision problem: is the language recognized by a quantum finite automaton empty or nonempty? We prove that this problem is decidable or undecidable depending on whether recognition is defined by strict or nonstrict thresholds. This result is in contrast with the corresponding situation for probabilistic finite automata, for which it(More)
We show that several problems which are known to be undecidable for probabilistic automata become decidable for quantum finite automata. Our main tool is an algebraic result of independent interest: we give an algorithm which, given a finite number of invertible matrices, computes the Zariski closure of the group generated by these matrices. Résumé Nous(More)
In this paper we emphasize the links between model theory and tilings. More precisely, after giving the definitions of what tilings are, we give a natural way to have an interpretation of the tiling rules in first order logics. This opens the way to map some model theoretical properties onto some properties of sets of tilings, or tilings themselves.
Subshifts of finite type are sets of colorings of the plane defined by local constraints. They can be seen as a discretization of continuous dynamical systems. We investigate here the hardness of deciding factorization, conjugacy and embedding of subshifts of finite type (SFTs) in dimension d > 1. In particular, we prove that the factorization problem is Σ(More)