Emmanuel Jeandel

Learn More
We study the following decision problem: is the language recognized by a quantum finite automaton empty or nonempty? We prove that this problem is decidable or undecidable depending on whether recognition is defined by strict or nonstrict thresholds. This result is in contrast with the corresponding situation for probabilistic finite automata, for which it(More)
We give a new, topological definition of automata that extends previous definitions of probabilistic and quantum automata. We then are able to prove in a unified framework that deterministic or non-deterministic probabilistic and quantum automata recognise only regular languages with an isolated threshold.
We prove that the maximum speed and the entropy of a one-tape Turing machine are computable, in the sense that we can approximate them to any given precision . This is counterintuitive, as all dynamical properties are usually undecidable for Turing machines. The result is quite specific to one-tape Turing machines, as it is not true anymore for two-tape(More)
We study the Monadic Second Order (MSO) Hierarchy over infinite pictures, that is tilings. We give a characterization of existential MSO in terms of tilings and projections of tilings. Conversely, we characterise logic fragments corresponding to various classes of infinite pictures (subshifts of finite type, sofic subshifts).