Emmanuel J Botzolakis

Learn More
Up-regulation of the GABAA receptor alpha4 subunit subtype has been consistently shown in multiple animal models of chronic epilepsy. This isoform is expressed in both thalamus and hippocampus and is likely to play a significant role in regulating corticothalamic and hippocampal rhythms. However, little is known about its physiological properties, thus(More)
Members of the Cys-loop superfamily of ligand-gated ion channels, which mediate fast synaptic transmission in the nervous system, are assembled as heteropentamers from a large repertoire of neuronal subunits. Although several motifs in subunit N-terminal domains are known to be important for subunit assembly, increasing evidence points toward a role for(More)
Benzodiazepines (BDZs) are GABA(A) receptor modulators with anxiolytic, hypnotic, and anticonvulsant properties. BDZs are understood to potentiate GABA(A) receptor function by increasing channel opening frequency, in contrast to barbiturates, which increase channel open duration. However, the in vitro evidence demonstrating increased opening frequency(More)
Penicillin, an open-channel blocker of GABA(A) receptors, was recently reported to inhibit phasic, but not tonic, currents in hippocampal neurons. To distinguish between isoform-specific and context-dependent modulation as possible explanations for this selectivity, the effects of penicillin were evaluated on recombinant GABA(A) receptors expressed in(More)
Members of the Cys-loop superfamily of ligand-gated ion channels, which mediate fast synaptic transmission in the nervous system, are assembled as heteropentamers from a large repertoire of neuronal subunits. Although several motifs in subunit N-terminal domains are known to be important for subunit assembly, increasing evidence points toward a role for(More)
BACKGROUND The traditional emphasis on developing high specificity pharmaceuticals ("magic bullets") for the treatment of Neurological and Psychiatric disorders is being challenged by emerging pathophysiology concepts that view disease states as abnormal interactions within complex networks of molecular and cellular components. So-called network(More)
We studied the consequences of expression of wild-type (WT) human NIPA1 and two mutant forms of NIPA1 with known HSP-associated mutations (T45R and G106R) on cultured rat cortical neurons and using equivalent substitutions in the Caenorhabditis elegans NIPA1 homolog CeNIPA. WT NIPA1 localized in transfected neuronal and non-neuronal cells to the Golgi(More)
Fast synaptic transmission is mediated by post-synaptic ligand-gated ion channels (LGICs) transiently activated by neurotransmitter released from pre-synaptic vesicles. Although disruption of synaptic transmission has been implicated in numerous neurological and psychiatric disorders, effective and practical methods for studying LGICs in vitro under(More)
The time course of inhibitory postsynaptic currents (IPSCs) reflects GABA(A) receptor deactivation, the process of current relaxation following transient activation. Fast desensitization has been demonstrated to prolong deactivation, and these processes have been described as being 'coupled'. However, the relationship between desensitization and(More)
Despite its genetic heterogeneity, hereditary spastic paraplegia (HSP) is characterized by similar clinical phenotypes, suggesting that a common biochemical pathway underlies its pathogenesis. In support of this hypothesis, we used a combination of immunoprecipitation, confocal microscopy, and flow cytometry to demonstrate that two HSP-associated proteins,(More)