Learn More
How is spatial information for limb movement encoded in the brain? Computational and psychophysical studies suggest that beginning hand position, via-points, and target are specified relative to the body to afford a comparison between the sensory (e.g., kinesthetic) reafferences and the commands that generate limb movement. Here we propose that the superior(More)
The nervous system controls the behavior of complex kinematically redundant biomechanical systems. How it computes appropriate commands to generate movements is unknown. Here we propose a model based on the assumption that the nervous system: 1) processes static (e.g., gravitational) and dynamic (e.g., inertial) forces separately; 2) calculates appropriate(More)
Positron emission tomography (PET) was used to identify cortical and subcortical regions involved in the control of reaching to visual targets. Regional cerebral blood flow (rCBF) was measured in eight healthy subjects using H2(15)O PET during the performance of three different tasks. All tasks required central fixation while a 400-ms target was flashed(More)
Strong experimental evidence indicates that protein kinase and phosphatase (KP) cycles are critical to both the induction and maintenance of activity-dependent modifications in neurons. However, their contribution to information storage remains controversial, despite impressive modeling efforts. For instance, plasticity models based on KP cycles do not(More)
Costs (e.g. energetic expenditure) and benefits (e.g. food) are central determinants of behavior. In ecology and economics, they are combined to form a utility function which is maximized to guide choices. This principle is widely used in neuroscience as a normative model of decision and action, but current versions of this model fail to consider how(More)
This paper describes a computational model of use-dependent recovery of movement strength following a stroke. The model frames the problem of strength recovery as that of learning appropriate activations of residual corticospinal neurons to their target motoneuronal pools. For example, for an agonist/antagonist muscle pair, we assume the motor system must(More)
In the last few years, anatomical and physiological studies have provided new insights into the organization of the parieto-frontal network underlying visually guided arm-reaching movements in at least three domains. (1) Network architecture. It has been shown that the different classes of neurons encoding information relevant to reaching are not confined(More)
There is strong experimental evidence that guiding the arm toward a visual target involves an initial vectorial transformation from direction in visual space to direction in motor space. Constraints on this transformation are imposed (i) by the neural codes for incoming information: the desired movement direction is thought to be signalled by populations of(More)
Speed/accuracy trade-off is a ubiquitous phenomenon in motor behaviour, which has been ascribed to the presence of signal-dependent noise (SDN) in motor commands. Although this explanation can provide a quantitative account of many aspects of motor variability, including Fitts' law, the fact that this law is frequently violated, e.g. during the acquisition(More)
Recent theories of motor control have proposed that the nervous system acts as a stochastically optimal controller, i.e. it plans and executes motor behaviors taking into account the nature and statistics of noise. Detrimental effects of noise are converted into a principled way of controlling movements. Attractive aspects of such theories are their ability(More)