Emmanuel Guédon

Learn More
A reinvestigation of cellulose degradation by Clostridium cellulolyticum in a bioreactor with pH control of the batch culture and using a defined medium was performed. Depending on cellulose concentration, the carbon flow distribution was affected, showing the high flexibility of the metabolism. With less than 6.7 g of cellulose liter(-1), acetate, ethanol,(More)
Previous results indicated poor sugar consumption and early inhibition of metabolism and growth when Clostridium cellulolyticum was cultured on medium containing cellobiose and yeast extract. Changing from complex medium to a synthetic medium had a strong effect on (i) the specific cellobiose consumption, which was increased threefold; and (ii) the electron(More)
Analysis of intracellular nucleotide and nucleotide sugar contents is essential in studying protein glycosylation of mammalian cells. Nucleotides and nucleotide sugars are the donor substrates of glycosyltransferases, and nucleotides are involved in cellular energy metabolism and its regulation. A sensitive and reproducible ion-pair reverse-phase(More)
Clostridium cellulolyticum, a nonruminal cellulolytic mesophilic bacterium, was grown in batch and continuous cultures on cellulose using a chemically defined medium. In batch culture with unregulated pH, less cellulose degradation and higher accumulation of soluble glucides were obtained compared to a culture with the pH controlled at 7.2. The gain in(More)
Corynebacterium diphtheriae DtxR is an iron-specific repressor of diphtheria toxin expression and iron homeostasis functions. A homologue, MntR, serves as a manganese-specific repressor of Mn(II) uptake in Bacillus subtilis. When expressed in B. subtilis, DtxR regulates gene expression in response to either iron or manganese with comparable sensitivity.(More)
Cellulolytic clostridia have evolved to catabolize lignocellulosic materials at a seasonal biorhythm, so their biotechnological exploitation requires genetic improvements. As high carbon flux leads to pyruvate accumulation, which is responsible for the cessation of growth of Clostridium cellulolyticum, this accumulation is decreased by heterologous(More)
The metabolic characteristics of Clostridium cellulolyticum, a mesophilic cellulolytic nonruminal bacterium, were investigated and characterized kinetically for the fermentation of cellulose by using chemostat culture analysis. Since with C. cellulolyticum (i) the ATP/ADP ratio is lower than 1, (ii) the production of lactate at low specific growth rate (mu)(More)
The hydrolysis and fermentation of insoluble cellulose were investigated using continuous cultures of Clostridium cellulolyticum with increasing amounts of carbon substrate. At a dilution rate (D) of 0.048 h(-1), biomass formation increased proportionately to the cellulose concentration provided by the feed reservoir, but at and above 7.6 g of cellulose x(More)
Both the macroheterogeneity of recombinant human IFN-gamma produced by CHO cells and intracellular levels of nucleotides and sugar nucleotides, have been characterized during batch and fed-batch cultures carried out in different media. Whereas PF-BDM medium was capable to maintain a high percentage of the doubly- glycosylated glycoforms all over the(More)
In Corynebacterium glutamicum, the activity of the 2-oxoglutarate dehydrogenase complex was shown to be controlled by the phosphorylation of a 15-kDa protein OdhI by different serine/threonine protein kinases. In this paper, the phosphorylation status and kinetics of OdhI dephosphorylation were assessed during glutamate producing processes triggered by(More)