Emmanuel Gaillard

Learn More
In isometric contraction-induced fatigue force loss has been related to mostly myoelectrical or intramuscular events. However, some factors potentially involved may interfere at more than one site in these events and it has proven difficult to distinguish between those influences. The study of the relationships between force generating capacity, the(More)
We have simultaneously recorded human biceps brachii intracellular pH, estimated by 31P-NMR, and EMG spectral shift, during isometric contraction and recovery in six subjects. This method allows us to concurrently study several components of muscle fatigue. The results show a clear dissociation between the recovery of intracellular pH, force-generating(More)
Coronary flow reserve (CFR) is markedly reduced in patients with severe aortic valve stenosis (AS), but the exact mechanisms underlying this impairment of CFR in AS remain unclear. Reduced CFR is the key mechanism leading to myocardial ischemia symptoms and adverse outcomes in AS patients. The objective of this study was to develop an explicit mathematical(More)
In some pathological conditions like aortic stiffening and calcific aortic stenosis (CAS), the microstructure of the aortic root and the aortic valve leaflets are altered in response to stress resulting in changes in tissue thickness, stiffness, or both. This aortic stiffening and CAS are thought to affect coronary blood flow. The goal of the present paper(More)
BACKGROUND Valve effective orifice area EOA and transvalvular mean pressure gradient (MPG) are the most frequently used parameters to assess aortic stenosis (AS) severity. However, MPG measured by cardiovascular magnetic resonance (CMR) may differ from the one measured by transthoracic Doppler-echocardiography (TTE). The objectives of this study were: 1) to(More)
Patients with aortic valve stenosis (AS) may experience angina pectoris even if they have angiographically normal coronary arteries. Angina is associated with a marked increase in the risk of sudden death in AS patients. Only a few in vitro models describing the interaction between the left ventricular and aortic pressures, and the coronary circulation have(More)
The fibrous cap is a protective layer of connective tissue that covers the core of an atherosclerotic plaque. The rupture of this layer has been commonly associated with acute myocardial infarctions. The thickness of the fibrous cap, the percentage of stenosed area, and the stiffness of the core were studied (commonly associated with vulnerable plaque(More)
Intra- and inter-observer variability in Doppler velocity echocardiographic measurements (DVEM) is a significant issue. Indeed, imprecisions of DVEM can lead to diagnostic errors, particularly in the quantification of the severity of heart valve dysfunction. To minimize the variability and rapidity of DVEM, we have developed an automatic method of Doppler(More)
Intra- and interobserver variability in Doppler echocardiographic velocity measurements (DEVM) is a significant issue. Indeed, imprecisions of DEVM can lead to diagnostic errors, particularly in the quantification of the severity of heart valve dysfunctions. To reduce the variability and rapidity of DEVM, we have developed an automatic method of Doppler(More)
Early detection and accurate estimation of aortic stenosis (AS) severity are the most important predictors of successful long-term outcomes in patients. Current clinical parameters used for evaluation of the AS severity have several limitations including flow dependency. Estimation of AS severity is specifically challenging in patients with low-flow and low(More)