Learn More
Microfluidic networks (microFNs) were used to pattern biomolecules with high resolution on a variety of substrates (gold, glass, or polystyrene). Elastomeric microFNs localized chemical reactions between the biomolecules and the surface, requiring only microliters of reagent to cover square millimeter-sized areas. The networks were designed to ensure(More)
Performing localized chemical events on surfaces is critical for numerous applications. We earlier invented the microfluidic probe (MFP), which circumvented the need to process samples in closed microchannels by hydrodynamically confining liquids that performed chemistries on surfaces (Juncker et al. Nat. Mater. 2005, 4, 622-628). Here we present a new and(More)
We are developing a high-resolution printing technique based on transferring a pattern from an elastomeric stamp to a solid substrate by conformal contact. This is an attempt to enhance the accuracy of classical printing to a precision comparable with optical lithography, creating a low-cost, large-area, high-resolution patterning process. First, we(More)
We use microfluidic chips to detect the biologically important cytokine tumor necrosis factor alpha (TNF- alpha) with picomolar sensitivity using sub-microliter volumes of samples and reagents. The chips comprise a number of independent capillary systems (CSs), each of which is composed of a filling port, an appended microchannel, and a capillary pump. Each(More)
Microfluidics are emerging as a promising technology for miniaturizing biological assays for applications in diagnostics and research in life sciences because they enable the parallel analysis of multiple analytes with economy of samples and in short time. We have previously developed microfluidic networks for surface immunoassays where antibodies that are(More)
n-Alkanethiols HS-(CH2)n-CH3 such as hexadecanethiol (HDT, n = 15), octadecanethiol (ODT, n = 17), and eicosanethiol (ECT, n = 19) have been shown to provide highly protective etch resists on microcontact-printed noble metals. As the quality of the printed pattern strongly depends on the mobility of the ink compound, we focused on understanding the(More)
Integrin-based focal adhesions (FA) transmit anchorage and traction forces between the cell and the extracellular matrix (ECM). To gain further insight into the physical parameters of the ECM that control FA assembly and force transduction in non-migrating cells, we used fibronectin (FN) nanopatterning within a cell adhesion-resistant background to(More)
Microfluidic systems allow (bio)chemical processes to be miniaturized with the benefit of shorter time-to-result, parallelism, reduced sample consumption, laminar flow, and increased control and efficiency. However, such miniaturization inherently limits the size of the solid objects that can be processed and entails new challenges such as the interfacing(More)
Point-of-care diagnostics will strongly benefit from miniaturization based on microfluidics because microfluidics integrate functions that can together preserve valuable samples and reagents, increase sensitivity of a test, and accelerate mass transport limited reactions. But a main challenge is to incorporate reagents into microfluidics and to make(More)