Learn More
Rapamycin, an inhibitor of the mechanistic target of rapamycin (mTOR), robustly extends the lifespan of model organisms including mice. We recently found that chronic treatment with rapamycin not only inhibits mTOR complex 1 (mTORC1), the canonical target of rapamycin, but also inhibits mTOR complex 2 (mTORC2) in vivo. While genetic evidence strongly(More)
Protein-restricted (PR), high-carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Furthermore, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderate PR diet also improves markers of(More)
Inhibition of the mechanistic target of rapamycin (mTOR) signaling pathway by the FDA-approved drug rapamycin has been shown to promote lifespan and delay age-related diseases in model organisms including mice. Unfortunately, rapamycin has potentially serious side effects in humans, including glucose intolerance and immunosuppression, which may preclude the(More)
Inhibition of the mTOR (mechanistic Target Of Rapamycin) signaling pathway robustly extends the lifespan of model organisms including mice. The precise molecular mechanisms and physiological effects that underlie the beneficial effects of rapamycin are an exciting area of research. Surprisingly, while some data suggest that mTOR signaling normally increases(More)
Aging is accompanied by impaired glucose homeostasis and an increased risk of type 2 diabetes, culminating in the failure of insulin secretion from pancreatic β-cells. To investigate the effects of age on β-cell metabolism, we established a novel assay to directly image islet metabolism with NAD(P)H fluorescence lifetime imaging (FLIM). We determined that(More)
Inhibition of the mTOR (mechanistic target of rapamycin) signaling pathway by the FDA-approved drug rapamycin promotes life span in numerous model organisms and delays age-related disease in mice. However, the utilization of rapamycin as a therapy for age-related diseases will likely prove challenging due to the serious metabolic and immunological side(More)
  • 1