Learn More
Juvenile cuttlefish (Sepia officinalis) camouflage themselves by changing their body pattern according to the background. This behaviour can be used to investigate visual perception in these molluscs and may also give insight into camouflage design. Edge detection is an important aspect of vision, and here we compare the body patterns that cuttlefish(More)
Cuttlefishes of the genus Sepia produce adaptive camouflage by regulating the expression of visual features such as spots and lines, and textures including stipples and stripes. They produce the appropriate pattern for a given environment by co-ordinated expression of about 40 of these 'chromatic components'. This behaviour has great flexibility, allowing(More)
Plaice (Pleuronectes platessa) is a flatfish well-known for the ability to vary its body pattern, probably for camouflage. This study investigates the repertoire of patterns used by juvenile plaice, by describing how they respond to shifts between three artificial backgrounds. Two basic patterns are under active control, fine ;spots' and coarser 'blotches'.(More)
Low-level mechanisms in vertebrate vision are sensitive to line orientation. Here we investigate orientation sensitivity in the cuttlefish Sepia pharaonis, by allowing animals to settle on stripe patterns. When camouflaging themselves cuttlefish are known to be sensitive to image parameters such as contrast and spatial scale, but we find no effect of(More)
(2006) Juvenile plaice (Pleuronectes platessa) produce camouflage by flexibly combining two separate patterns. This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL(More)
  • 1