Emma Hodcroft

Learn More
As sequence data sets used for the investigation of pathogen transmission patterns increase in size, automated tools and standardized methods for cluster analysis have become necessary. We have developed an automated Cluster Picker which identifies monophyletic clades meeting user-input criteria for bootstrap support and maximum genetic distance within(More)
BACKGROUND The United Kingdom human immunodeficiency virus (HIV) epidemic was historically dominated by HIV subtype B transmission among men who have sex with men (MSM). Now 50% of diagnoses and prevalent infections are among heterosexual individuals and mainly involve non-B subtypes. Between 2002 and 2010, the prevalence of non-B diagnoses among MSM(More)
Disease progression in HIV-infected individuals varies greatly, and while the environmental and host factors influencing this variation have been widely investigated, the viral contribution to variation in set-point viral load, a predictor of disease progression, is less clear. Previous studies, using transmission-pairs and analysis of phylogenetic signal(More)
Viral phylogenetic methods contribute to understanding how HIV spreads in populations, and thereby help guide the design of prevention interventions. So far, most analyses have been applied to well-sampled concentrated HIV-1 epidemics in wealthy countries. To direct the use of phylogenetic tools to where the impact of HIV-1 is greatest, the Phylogenetics(More)
We compared the behavior of two approaches (Cluster Picker and HIV-TRACE) at varying genetic distances to identify transmission clusters. We used three HIV gp41 sequence datasets originating from the Rakai Community Cohort Study: (1) next-generation sequence (NGS) data from nine linked couples; (2) NGS data from longitudinal sampling of 14 individuals; and(More)
HIV molecular epidemiology studies analyse viral pol gene sequences due to their availability, but whole genome sequencing allows to use other genes. We aimed to determine what gene(s) provide(s) the best approximation to the real phylogeny by analysing a simulated epidemic (created as part of the PANGEA_HIV project) with a known transmission tree. We(More)
Phylogenetic clustering approaches can elucidate HIV transmission dynamics. Comparisons across countries are essential for evaluating public health policies. Here, we used a standardised approach to compare the UK HIV Drug Resistance Database and the Swiss HIV Cohort Study while maintaining data-protection requirements. Clusters were identified in subtype(More)
  • 1