Learn More
Recent models from theoretical physics have predicted that mass-migrating animal groups may share group-level properties, irrespective of the type of animals in the group. One key prediction is that as the density of animals in the group increases, a rapid transition occurs from disordered movement of individuals within the group to highly aligned(More)
Desert locusts show an extreme form of phenotypic plasticity, changing between a cryptic solitarious phase and a swarming gregarious phase that differ in many aspects of behaviour, physiology and appearance. Solitarious locusts show rapid behavioural phase change in response to tactile stimulation directed to the hind femora. Repeatedly touching as little(More)
The expression of individual differences within a population often depends on environmental conditions. We investigated, first, whether there are differences between individual group-living forest tent caterpillars, Malacosoma disstria, that are expressed only in nutritionally unbalanced environments, and second, to what extent these individual behavioural(More)
The butterfly fauna of the high-altitude desert of Northern Chile, though depauperate, shows high endemism, is poorly known and is of considerable conservation concern. This study surveys butterflies along the Andean slope between 2400 and 5000 m asl (prepuna, puna and Andean steppe habitats) as well as in high and low-altitude wetlands and in the(More)
Desert locusts in the solitarious phase were repeatedly touched on various body regions to identify the site of mechanosensory input that elicits the transition to gregarious phase behavior. The phase state of individual insects was measured after a 4-h period of localized mechanical stimulation, by using a behavioral assay based on multiple logistic(More)
Central to swarm formation in migratory locusts is a crowding-induced change from a "solitarious" to a "gregarious" phenotype. This change can occur within the lifetime of a single locust and accrues across generations. It represents an extreme example of phenotypic plasticity. We present computer simulations and a laboratory experiment that show how(More)
Collective foraging in group living animal populations displaying behavioral polymorphism is considered. Using mathematical modeling it is shown that symmetric, spatially homogeneous (food sources are used equally) and asymmetric, spatially inhomogeneous (only one food source is used) regimes can coexist, as a result of differential amplification of choice(More)
Gregariousness in animals is widely accepted as a behavioral adaptation for protection from predation. However, predation risk and the effectiveness of a prey's defense can be a function of several other factors, including predator species and prey size or age. The objective of this study was to determine if the gregarious habit of Malacosoma disstria(More)
Desert Locusts can change reversibly between solitarious and gregarious phases, which differ considerably in behaviour, morphology and physiology. The two phases show many behavioural differences including both overall levels of activity and the degree to which they are attracted or repulsed by conspecifics. Solitarious locusts perform infrequent bouts of(More)
Synchronized behaviour is common in animal groups. In ant colonies, synchronization occurs because active ants stimulate their neighbours to activity. We use oscillator theory to explain how stimulation from active neighbours synchronizes activity in groups of solitarious locusts via entrainment of internal physiological rhythms. We also show that the(More)