Emma C. Robinson

Learn More
Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical(More)
Spontaneous fluctuations in activity in different parts of the brain can be used to study functional brain networks. We review the use of resting-state functional MRI (rfMRI) for the purpose of mapping the macroscopic functional connectome. After describing MRI acquisition and image-processing methods commonly used to generate data in a form amenable to(More)
Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas due to variable correlation between cortical folding patterns and function. This has led to the proposal of new registration methods using features derived from functional and diffusion imaging.(More)
We generated probabilistic area maps and maximum probability maps (MPMs) for a set of 18 retinotopic areas previously mapped in individual subjects (Georgieva et al., 2009 and Kolster et al., 2010) using four different inter-subject registration methods. The best results were obtained using a recently developed multimodal surface matching method. The best(More)
Combining diffusion magnetic resonance imaging and network analysis in the adult human brain has identified a set of highly connected cortical hubs that form a "rich club"--a high-cost, high-capacity backbone thought to enable efficient network communication. Rich-club architecture appears to be a persistent feature of the mature mammalian brain, but it is(More)
Models of whole-brain connectivity are valuable for understanding neurological function, development and disease. This paper presents a machine learning based approach to classify subjects according to their approximated structural connectivity patterns and to identify features which represent the key differences between groups. Brain networks are extracted(More)
Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The(More)
It is well established that it is possible to observe spontaneous, highly structured, fluctuations in human brain activity from functional magnetic resonance imaging (fMRI) when the subject is 'at rest'. However, characterising this activity in an interpretable manner is still a very open problem. In this paper, we introduce a method for identifying modes(More)
We present a novel probabilistic framework to learn across several subjects a mapping from brain anatomical connectivity to functional connectivity, i.e. the covariance structure of brain activity. This prediction problem must be formulated as a structured-output learning task, as the predicted parameters are strongly correlated. We introduce a model(More)
This paper presents a new framework for the analysis of anatomical connectivity derived from diffusion tensor MRI. The framework has been applied to estimate whole brain structural networks using diffusion data from 174 adult subjects. In the proposed approach, each brain is first segmented into 83 anatomical regions via label propagation of multiple(More)