Learn More
The Fe- and Mn-containing superoxide dismutases catalize the same reaction and have almost superimposable active sites. Therefore, the details of their mechanisms have been assumed to be similar. However, we now show that the pH dependence of Escherichia coli MnSOD activity reflects a different active site proton equilibrium in (oxidized) Mn(3+)SOD than the(More)
A combined spectroscopic/computational approach has been utilized to explore the chemical origins of the active-site pKs of the structurally homologous Fe- and Mn-dependent superoxide dismutases (SODs). Absorption, circular dichroism, magnetic circular dichroism, and variable-temperature, variable-field magnetic circular dichroism spectroscopic experiments(More)
Like many non-heme iron enzymes, reduced iron superoxide dismutase (Fe(2+)SOD) reacts with nitric oxide (NO) to yield an [Fe-NO]7 system. Electron paramagnetic resonance (EPR) data obtained for this Fe-NO adduct of FeSOD (NO-FeSOD) exhibit two rhombic S = 3/2 signals of comparable population; E/D = 0.128 (42%) and 0.154 (58%). While similar results were(More)
A combination of spectroscopic and computational methods has been employed to explore the nature of the yellow and pink low-temperature azide adducts of iron(III) superoxide dismutase (N(3)-FeSOD), which have been known for more than two decades. Variable-temperature variable-field magnetic circular dichroism (MCD) data suggest that both species possess(More)
We are addressing the puzzling metal ion specificity of Fe- and Mn-containing superoxide dismutases (SODs) [see C.K.Vance, A.-F. Miller. J. Am. Chem. Soc. 120(3) (1998) 461-467]. Here, we test the significance to activity and active site integrity of the Gln side chain at the center of the active site hydrogen bond network. We have generated a mutant of(More)
Manganese superoxide dismutase (MnSOD) is an enzyme found in mitochondria and chloroplasts of eukaryotes and in the cytoplasm of bacteria. 1,2 The redox active Mn ion cofactor catalyzes the one-electron redox cycle by a two-step dispropor-tionation reaction with oxidized Mn 3+ in the resting state. In this report, we have used parallel polarization CW-EPR(More)
Nineteen of the highly conserved residues of Escherichia coli (E. coli) Elongation factor Tu (EF-Tu) that form the binding interface with aa-tRNA were mutated to alanine to better understand how modifying the thermodynamic properties of EF-Tu-tRNA interaction can affect the decoding properties of the ribosome. Comparison of ΔΔG(o) values for binding EF-Tu(More)
Nineteen of the highly conserved residues of Escherichia coli (E. coli) Elongation factor Tu (EF-Tu) that form the binding interface with aa-tRNA were mutated to alanine to better understand how modifying the thermodynamic properties of EF-Tu−tRNA interaction can affect the decoding properties of the ribosome. Comparison of ΔΔG o values for binding EF-Tu to(More)
The highly homologous proteins of Fe-containing superoxide dismutase (FeSOD) and MnSOD from Escherichia coli nonetheless exert very different redox tuning on the active site metal ion [Vance; Miller J. Am. Chem. Soc. 1998, 120, 461-467; Biochemistry 2001, 40, 13079-13087]. This was proposed to stem from different hydrogen bonding between the protein and the(More)
  • 1