Learn More
BACKGROUND Functional connectivity analyses of functional magnetic resonance imaging data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to(More)
This review focuses on the use of resting-state functional magnetic resonance imaging data to assess functional connectivity in the human brain and its application in intractable epilepsy. This approach has the potential to predict outcomes for a given surgical procedure based on the pre-surgical functional organization of the brain. Functional connectivity(More)
Functional magnetic resonance imaging (fMRI) studies typically collapse data from many subjects, but brain functional organization varies between individuals. Here we establish that this individual variability is both robust and reliable, using data from the Human Connectome Project to demonstrate that functional connectivity profiles act as a 'fingerprint'(More)
Although attention plays a ubiquitous role in perception and cognition, researchers lack a simple way to measure a person's overall attentional abilities. Because behavioral measures are diverse and difficult to standardize, we pursued a neuromarker of an important aspect of attention, sustained attention, using functional magnetic resonance imaging. To(More)
Although fluctuations in sustained attention are ubiquitous, most psychological experiments treat them as noise, averaging performance over many trials. The current study uses multi-voxel pattern analysis (MVPA) to decode whether, on each trial of a cognitive task, participants are in an optimal or suboptimal attentional state. During fMRI, participants(More)
The large-scale organization of the brain has features of complex networks that can be quantified using network measures from graph theory. However, many network measures were designed to be calculated on binary graphs, whereas functional brain organization is typically inferred from a continuous measure of correlations in temporal signal between brain(More)
Resting-state functional magnetic resonance image (rs-fMRI) is increasingly used to study functional brain networks. Nevertheless, variability in these networks due to factors such as sex and aging is not fully understood. This study explored sex differences in normal age trajectories of resting-state networks (RSNs) using a novel voxel-wise measure of(More)
UNLABELLED Recent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg(More)