Learn More
Research on action simulation identifies brain areas that are active while imagining or performing simple overlearned actions. Are areas engaged during imagined movement sensitive to the amount of actual physical practice? In the present study, participants were expert dancers who learned and rehearsed novel, complex whole-body dance sequences 5 h a week(More)
Human motor skills can be acquired by observation without the benefit of immediate physical practice. The current study tested if physical rehearsal and observational learning share common neural substrates within an action observation network (AON) including premotor and inferior parietal regions, that is, areas activated both for execution and observation(More)
Observation of human actions recruits a well-defined network of brain regions, yet the purpose of this action observation network (AON) remains under debate. Some authors contend that this network has developed to respond specifically to observation of human actions. Conversely, others suggest that this network responds in a similar manner to actions(More)
The field of neuroaesthetics attracts attention from neuroscientists and artists interested in the neural underpinnings of esthetic experience. Though less studied than the neuroaesthetics of visual art, dance neuroaesthetics is a particularly rich subfield to explore, as it is informed not only by research on the neurobiology of aesthetics, but also by an(More)
Linking observed and executable actions appears to be achieved by an action observation network (AON), comprising parietal, premotor, and occipitotemporal cortical regions of the human brain. AON engagement during action observation is thought to aid in effortless, efficient prediction of ongoing movements to support action understanding. Here, we(More)
Social interaction and comprehension of non-verbal behaviour requires a representation of people's bodies. Research into the neural underpinnings of body representation implicates several brain regions including extrastriate and fusiform body areas (EBA and FBA), superior temporal sulcus (STS), inferior frontal gyrus (IFG) and inferior parietal lobule(More)
Past research demonstrates that we are more likely to positively evaluate a stimulus if we have had previous experience with that stimulus. This has been shown for judgment of faces, architecture, artworks and body movements. In contrast, other evidence suggests that this relationship can also work in the inverse direction, at least in the domain of(More)
A large body of evidence suggests that action execution and action observation share a common representational domain. To date, little is known about age-related changes in these action representations that are assumed to support various abilities such as the prediction of observed actions. The purpose of the present study was to investigate (a) how age(More)
Throughout history, dance has maintained a critical presence across all human cultures, defying barriers of class, race, and status. How dance has synergistically co-evolved with humans has fueled a rich debate on the function of art and the essence of aesthetic experience, engaging numerous artists, historians, philosophers, and scientists. While dance(More)
Generating predictions during action observation is essential for efficient navigation through our social environment. With age, the sensitivity in action prediction declines. In younger adults, the action observation network (AON), consisting of premotor, parietal and occipitotemporal cortices, has been implicated in transforming executed and observed(More)