Learn More
Graph theory is a body of mathematics dealing with problems of connectivity, flow, and routing in networks ranging from social groups to computer networks. Recently, network applications have erupted in many fields, and graph models are now being applied in landscape ecology and conservation biology, particularly for applications couched in metapopulation(More)
Spatially explicit population models (SEPMs) are often considered the best way to predict and manage species distributions in spatially heterogeneous landscapes. However, they are computationally intensive and require extensive knowledge of species' biology and behavior, limiting their application in many cases. An alternative to SEPMs is graph theory,(More)
Connectivity of habitat patches is thought to be important for movement of genes, individuals, populations, and species over multiple temporal and spatial scales. We used graph theory to characterize multiple aspects of landscape connectivity in a habitat network in the North Carolina Piedmont (U.S.A). We compared this landscape with simulated networks with(More)
Landscape fragmentation and exotic species invasions are two modern-day forces that have strong and largely irreversible effects on native diversity worldwide. The spatial arrangement of habitat fragments is critical in affecting movement of individuals through a landscape, but little is known about how invasive species respond to landscape configuration(More)
This study examined native bird communities in forest patches across a gradient of urbanization. We used field data and multivariate statistical techniques to examine the effects of landscape context, roads, traffic noise, and vegetation characteristics on bird community composition in the North Carolina Piedmont (U.S.A.). Landscape-level variables,(More)
The spread and distribution of exotic species depends on a number of factors, both anthropogenic and biophysical. The importance of each factor may vary geographically, making it difficult to predict where a species will spread. In this paper, we examine the factors that influence the distribution of monk parakeets (Myiopsitta monachus), a parrot native to(More)
Many claims have been made regarding the potential benefits of Tangible User Interfaces (TUIs). Presented here is an experiment assessing the usability, problem solving, and collaboration benefits of a TUI for direct placement tasks in spatially-explicit simulations for environmental science education. To create a low-cost deployment for single-computer(More)
As urbanization accelerates, urban biodiversity conservation is becoming a great concern for the maintenance of urban ecosystem functions. In particular, forest bird communities in urban areas have been recognized as a conservation target because of their functions in food webs and ecosystem services. But our understanding of which local- and(More)
Despite the global trend in urbanization, little is known about patterns of biodiversity or provisioning of ecosystem services in urban areas. Bee communities and the pollination services they provide are important in cities, both for small-scale urban agriculture and native gardens. To better understand this important ecological issue, we examined bee(More)
Protected areas must be close, or connected, enough to allow for the preservation of large-scale ecological and evolutionary processes, such as gene flow, migration, and range shifts in response to climate change. Nevertheless, it is unknown whether the network of protected areas in the United States is connected in a way that will preserve biodiversity(More)