Emily L. Ryan

Learn More
Classic galactosemia is a potentially lethal disorder that results from profound impairment of galactose-1-phosphate uridylyltransferase (GALT). Despite decades of research, the underlying pathophysiology of classic galactosemia remains unclear, in part owing to the lack of an appropriate animal model. Here, we report the establishment of a Drosophila(More)
CONTEXT Classic galactosemia is a potentially lethal genetic disorder resulting from profound impairment of galactose-1P uridylyltransferase (GALT). More than 80% of girls and women with classic galactosemia experience primary or premature ovarian insufficiency despite neonatal diagnosis and rigorous lifelong dietary galactose restriction. OBJECTIVE The(More)
Classic galactosemia (CG) is a potentially lethal inborn error of metabolism that results from the profound loss of galactose-1-phosphate uridylyltransferase (GALT), the second enzyme in the Leloir pathway of galactose metabolism. Neonatal detection and dietary restriction of galactose minimizes or resolves the acute sequelae of CG, but fails to prevent the(More)
According to the expertise account of face specialization, a deficit that affects general expertise mechanisms should similarly impair the expert individuation of both faces and other visually homogeneous object classes. To test this possibility, we attempted to train a prosopagnosic patient, LR, to become a Greeble expert using the standard Greeble(More)
AIMS The goal of this study was to use two manganese (Mn)-based superoxide dismutase (SOD) mimics to test the hypothesis that reactive oxygen species contribute to both acute and long-term outcomes in a galactose-1P uridylyltransferase (GALT)-null Drosophila melanogaster model of classic galactosemia. RESULTS We tested the impact of each of two Mn(More)
Classic galactosemia is a potentially lethal disorder that results from profound deficiency of galactose-1-phosphate uridylyltransferase (GALT), the second enzyme in the Leloir pathway of galactose metabolism. Although early diagnosis and rigorous dietary restriction of galactose prevent or resolve the potentially lethal acute symptoms, patients are at(More)
Despite neonatal diagnosis and life-long dietary restriction of galactose, many patients with classic galactosemia grow to experience significant long-term complications. Among the more common are speech, cognitive, behavioral, ovarian and neurological/movement difficulties. Despite decades of research, the pathophysiology of these long-term complications(More)
Advanced multiscale modeling and simulation have the potential to dramatically reduce the time and cost to develop new carbon capture technologies. The Carbon Capture Simulation Initiative is a partnership among national laboratories, industry, and universities that is developing, demonstrating, and deploying a suite of such tools, including basic data(More)