Learn More
Sulforaphane (SFN) is an isothiocyanate from broccoli that induces phase 2 detoxification enzymes. We recently reported that SFN acts as a histone deacetylase (HDAC) inhibitor in human colon cancer cells in vitro, and the present study sought to extend these findings in vivo. In mice treated with a single oral dose of 10 mumol SFN, there was significant(More)
Mouse models have markedly improved our understanding of cancer development and tumor biology. However, these models have shown limited efficacy as tractable systems for unbiased genetic experimentation. Here, we report the adaptation of loss-of-function screening to mouse models of cancer. Specifically, we have been able to introduce a library of shRNAs(More)
Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA(More)
Sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables, induces potent anti-proliferative effects in prostate cancer cells. One mechanism that may contribute to the anti-proliferative effects of SFN is the modulation of epigenetic marks, such as inhibition of histone deacetylase (HDAC) enzymes. However, the effects of SFN on other common(More)
There is growing interest in the various mechanisms that regulate chromatin remodeling, including modulation of histone deacetylase (HDAC) activities. Competitive HDAC inhibitors disrupt the cell cycle and/or induce apoptosis via de-repression of genes such as P21 and BAX, and cancer cells appear to be more sensitive than non-transformed cells to(More)
BACKGROUND Histone deacetylase (HDAC) inhibitors are currently undergoing clinical evaluation as anti-cancer agents. Dietary constituents share certain properties of HDAC inhibitor drugs, including the ability to induce global histone acetylation, turn-on epigenetically-silenced genes, and trigger cell cycle arrest, apoptosis, or differentiation in cancer(More)
Mutations to the copper, zinc superoxide dismutase (SOD) gene are responsible for 2-3% of amyotrophic lateral sclerosis (ALS) cases. These mutations result in the protein having a reduced affinity for zinc. SOD becomes toxic to motor neurons when zinc is missing from its active site. Recently, high dosages of zinc (75 and 375 mg/kg/day) have been(More)
Histone deacetylases (HDACs) and acetyltransferases have important roles in the regulation of protein acetylation, chromatin dynamics and the DNA damage response. Here, we show in human colon cancer cells that dietary isothiocyanates (ITCs) inhibit HDAC activity and increase HDAC protein turnover with the potency proportional to alkyl chain length, i.e.,(More)
The dietary agent sulforaphane (SFN) has been reported to induce nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2)-dependent pathways as well as inhibiting histone deacetylase (HDAC) activity. The current investigation sought to examine the relationships between Nrf2 status and HDAC expression in preclinical and translational studies. Wild type(More)
MicroRNAs (miRNAs or miRs) are short non-coding RNAs that affect the expression of genes involved in normal physiology, but that also become dysregulated in cancer development. In the latter context, studies to date have focused on high-abundance miRNAs and their targets. We hypothesized that among the pool of low-abundance miRNAs are some with the(More)