Learn More
We present a scheme to extract the velocity of buoyant structures in turbulent thermal convection from simultaneous local velocity and temperature measurements. Applying this scheme to measurements taken at positions within the convection cell where the buoyant structures are dominated by plumes, we obtain the temperature dependence of the plume velocity(More)
Human heart rate is known to display complex fluctuations. Evidence of multifractality in heart rate fluctuations in healthy state has been reported [Ivanov, Nature (London) 399, 461 (1999)]. This multifractal character could be manifested as the dependence of the probability density functions (PDFs) of the interbeat interval increments, which are the(More)
or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear the full citation on the first page. Copyrights for components of this work owned by others than IFETS must be honoured. Abstracting with credit is permitted. To copy otherwise, to(More)
In the study of networked systems, a method that can extract information about how the individual nodes are connected with one another would be valuable. In this paper, we present a method that can yield such information of network connectivity using measurements of the dynamics of the nodes as the only input data. Our method is built upon a noise-induced(More)
We present a method that reconstructs both the links and their relative coupling strength of bidirectional weighted networks. Our method requires only measurements of node dynamics as input. Using several examples, we demonstrate that our method can give accurate results for weighted random and weighted scale-free networks with both linear and nonlinear(More)
It is well-known that the dominant late time behavior of waves propagating on a Schwarzschild spacetime is a power-law tail; tails for other spacetimes have also been studied. This paper presents a systematic treatment of the tail phenomenon for a broad class of models via a Green's function formalism and establishes the following. (i) The tail is governed(More)
A simple model of the effect of polymer concentration on the amount of drag reduction in turbulence is presented, simulated, and analyzed. The qualitative phase diagram of drag coefficient versus Reynolds number (Re) is recaptured in this model, including the theoretically elusive onset of drag reduction and the maximum drag reduction (MDR) asymptote. The(More)