Emily Childress

Learn More
Combating liver tumors via yttrium-90 (90Y) radioembolization is a viable treatment option of nonresectable liver tumors. Employing clinical 90Y microparticles (i.e., SIR-Spheres® and TheraSpheres®) in a computational model of a representative hepatic artery system, laminar transient 3D particle-hemodynamics were simulated. Specifically, optimal particle(More)
In this second part, the methodology for optimal tumor-targeting is further explored, employing a patient-inspired hepatic artery system which differs significantly from the idealized configuration discussed in Part I. Furthermore, the fluid dynamics of a microsphere supply apparatus is also analyzed. The best radial catheter positions and particle-release(More)
Implementation of a novel direct tumor-targeting technique requires a computer modeling stage to generate particle release maps (PRMs) which allow for optimal catheter positioning and selection of best injection intervals for drug-particles. This simulation task for a patient-specific PRM may require excessive computational resources and a relatively long(More)
Recent work employing the computational fluid-particle modeling of the hepatic arteries has identified a correlation between particle release position and downstream branch distribution for direct tumor-targeting in radioembolization procedures. An experimental model has been constructed to evaluate the underlying simulation theory and determine its(More)
Direct targeting of solid tumors with chemotherapeutic drugs and/or radioactive microspheres can be a treatment option which minimizes side-effects and reduces cost. Briefly, computational analysis generates particle release maps (PRMs) which visually link upstream particle injection regions in the main artery with associated exit branches, some connected(More)
Building on previous studies in which the transport and targeting of (90)Y microspheres for liver tumor treatment were numerically analyzed based on medical data sets, this two-part paper discusses the influence of an anchored, radially adjustable catheter on local blood flow and microsphere delivery in an idealized hepatic artery system (Part I). In Part(More)
Targeted drug delivery to solid tumors is a very active research area, focusing mainly on improved drug formulation and associated best delivery methods/devices. Drug-targeting has the potential to greatly improve drug-delivery efficacy, reduce side effects, and lower the treatment costs. However, the vast majority of drug-targeting studies assume that the(More)
  • 1