Emily C. Moorefield

Learn More
The ability to extract somatic cells from a patient and reprogram them to pluripotency opens up new possibilities for personalized medicine. Induced pluripotent stem cells (iPSCs) have been employed to generate beating cardiomyocytes from a patient's skin or blood cells. Here, iPSC methods were used to generate cardiomyocytes starting from the urine of a(More)
Amniotic fluid stem (AFS) cells are broadly multipotent, can be expanded extensively in culture, are not tumorigenic and can be readily cryopreserved for cell banking. Mesenchymal stem cells (MSC) show immunomodulatory activity and secrete a wide spectrum of cytokines and chemokines that suppress inflammatory responses, block mixed lymphocyte reactions(More)
In this study a novel method of simultaneous gene transfection and cell delivery based on inkjet printing technology is described. Plasmids encoding green fluorescent protein (GFP) were coprinted with living cells (porcine aortic endothelial [PAE] cells) through the ink cartridge nozzles of modified commercial inkjet printers. Agarose gel electrophoresis(More)
This study investigated the differentiation of human amniotic fluid-derived stem cells (hAFSCs) into insulin-producing clusters in vitro. Adenovirally-delivered mouse Pdx1 (Ad-Pdx1) induced human Pdx1 expression in hAFSCs and enhanced the coordinated expression of downstream β-cell markers. When Ad-Pdx1-transduced hAFSCs were sequentially treated with(More)
Insulin therapy for type 1 diabetes does not prevent serious long-term complications including vascular disease, neuropathy, retinopathy and renal failure. Stem cells, including amniotic fluid-derived stem (AFS) cells - highly expansive, multipotent and nontumorigenic cells - could serve as an appropriate stem cell source for β-cell differentiation. In the(More)
  • 1