Learn More
MicroRNAs (miRNAs) are regulators of myriad cellular events, but evidence for a single miRNA that can efficiently differentiate multipotent stem cells into a specific lineage or regulate direct reprogramming of cells into an alternative cell fate has been elusive. Here we show that miR-145 and miR-143 are co-transcribed in multipotent murine cardiac(More)
BACKGROUND The epidermal cells of the C. elegans embryo undergo coordinated cell shape changes that result in the morphogenetic process of elongation. The cytoskeletal ankyrin repeat protein VAB-19 is required for cell shape changes and localizes to cell-matrix attachment structures. The molecular functions of VAB-19 in this process are obscure, as no(More)
The F-spondin family of extracellular matrix proteins has been implicated in axon outgrowth, fasciculation and neuronal cell migration, as well as in the differentiation and proliferation of non-neuronal cells. In screens for mutants defective in C. elegans embryonic morphogenesis, we identified SPON-1, the only C. elegans member of the spondin family.(More)
SUMMARY microRNAs are regulators of myriad cellular events, but evidence for a single microRNA that can efficiently differentiate multipotent cells into a specific lineage or regulate direct reprogramming of cells into an alternate cell fate has been elusive. Here, we show that miR-145 and miR-143 are co-transcribed in multipotent cardiac progenitors before(More)
  • 1