Learn More
Infants begin to segment words from fluent speech during the same time period that they learn phonetic categories. Segmented words can provide a potentially useful cue for phonetic learning, yet accounts of phonetic category acquisition typically ignore the contexts in which sounds appear. We present two experiments to show that, contrary to the assumption(More)
This study explored the neural systems underlying the perception of phonetic category structure by investigating the perception of a voice onset time (VOT) continuum in a phonetic categorization task. Stimuli consisted of five synthetic speech stimuli which ranged in VOT from 0 msec ([da]) to 40 msec ([ta]). Results from 12 subjects showed that the neural(More)
The problem of mapping differing sensory stimuli onto a common category is fundamental to human cognition. Listeners perceive stable phonetic categories despite many sources of acoustic variability. What are the neural mechanisms that underlie this perceptual stability? In this functional magnetic resonance imaging study, a short-interval habituation(More)
Previous studies examining explicit semantic processing have consistently shown activation of the left inferior frontal gyrus (IFG). In contrast, implicit semantic processing tasks have shown activation in posterior areas including the superior temporal gyrus (STG) and the middle temporal gyrus (MTG) with less consistent activation in the IFG. These results(More)
Recent research suggests that the left inferior frontal gyrus (LIFG) plays a role in selecting semantic information from among competing alternatives. A key question remains as to whether the LIFG is engaged by the selection of semantic information only or by increased semantic competition in and of itself, especially when such competition is implicit in(More)
The current study used fMRI to explore the extent to which neural activation patterns in the processing of speech are driven by the quality of a speech sound as a member of its phonetic category, that is, its category typicality, or by the competition inherent in resolving the category membership of stimuli which are similar to other possible speech sounds.(More)
The current study examined the neural systems underlying lexically conditioned phonetic variation in spoken word production. Participants were asked to read aloud singly presented words, which either had a voiced minimal pair (MP) neighbor (e.g., cape) or lacked a minimal pair (NMP) neighbor (e.g., cake). The voiced neighbor never appeared in the stimulus(More)
This study explored the neural correlates of phonological-lexical competition and frequency on word recognition. An event-related fMRI experiment was conducted using an auditory lexical decision task in which word and nonword stimuli varied in terms of neighborhood density (high and low). Word stimuli also varied in terms of frequency (high and low).(More)
The current study investigated the neural correlates that underlie the processing of ambiguous words and the potential effects of semantic competition on that processing. Participants performed speeded lexical decisions on semantically related and unrelated prime-target pairs presented in the auditory modality. The primes were either ambiguous words (e.g.,(More)
The discrimination of voice-onset time, an acoustic-phonetic cue to voicing in stop consonants, was investigated to explore the neural systems underlying the perception of a rapid temporal speech parameter. Pairs of synthetic stimuli taken from a [da] to [ta] continuum varying in voice-onset time (VOT) were presented for discrimination judgments.(More)