#### Filter Results:

#### Publication Year

2006

2016

#### Co-author

#### Key Phrase

#### Publication Venue

#### Data Set Used

Learn More

The hierarchical Dirichlet process hidden Markov model (HDP-HMM) is a flexible, nonparametric model which allows state spaces of unknown size to be learned from data. We demonstrate some limitations of the original HDP-HMM formulation (Teh et al., 2006), and propose a <i>sticky</i> extension which allows more robust learning of smoothly varying dynamics.… (More)

Hamiltonian Monte Carlo (HMC) sampling methods provide a mechanism for defining distant proposals with high acceptance probabilities in a Metropolis-Hastings framework, enabling more efficient exploration of the state space than standard random-walk proposals. The popularity of such methods has grown significantly in recent years. However, a limitation of… (More)

We propose a Bayesian nonparametric approach to the problem of modeling related time series. Using a beta process prior, our approach is based on the discovery of a set of latent dynamical behaviors that are shared among multiple time series. The size of the set and the sharing pattern are both inferred from data. We develop an efficient Markov chain Monte… (More)

—Many complex dynamical phenomena can be effectively modeled by a system that switches among a set of conditionally linear dynamical modes. We consider two such models: the switching linear dynamical system (SLDS) and the switching vector autoregressive (VAR) process. Our Bayesian nonparametric approach utilizes a hierarchical Dirichlet process prior to… (More)

Many nonlinear dynamical phenomena can be effectively modeled by a system that switches among a set of conditionally linear dynamical modes. We consider two such models: the switching linear dynamical system (SLDS) and the switching vector autoregressive (VAR) process. Our nonparametric Bayesian approach utilizes a hierarchical Dirichlet process prior to… (More)

- Emily Fox, David Dunson
- 2011

Although there is a rich literature on methods for allowing the variance in a univari-ate regression model to vary with predictors, time and other factors, relatively little has been done in the multivariate case. Our focus is on developing a class of nonparametric covariance regression models, which allow an unknown p × p covariance matrix to change… (More)

Determinantal point processes (DPPs) are random point processes well-suited for modeling repulsion. In machine learning, the focus of DPP-based models has been on diverse subset selection from a discrete and finite base set. This discrete setting admits an efficient sampling algorithm based on the eigendecomposition of the defining kernel matrix. Recently,… (More)

Statistical network modeling has focused on representing the graph as a discrete structure, namely the adjacency matrix, and considering the exchangeability of this array. In such cases, the Aldous-Hoover representation theorem (Aldous, 1981; Hoover, 1979) applies and informs us that the graph is necessarily either dense or empty. In this paper, we instead… (More)

Determinantal point processes (DPPs) are well-suited for modeling repulsion and have proven useful in many applications where diversity is desired. While DPPs have many appealing properties, such as efficient sampling , learning the parameters of a DPP is still considered a difficult problem due to the non-convex nature of the likelihood function. In this… (More)

Many recent Markov chain Monte Carlo (MCMC) samplers leverage continuous dynamics to define a transition kernel that efficiently explores a target distribution. In tandem, a focus has been on devising scalable variants that subsample the data and use stochastic gradients in place of full-data gradients in the dynamic simulations. However, such stochastic… (More)