Emily A. Resseguie

  • Citations Per Year
Learn More
Premature infants requiring supplemental oxygen are at increased risk for developing bronchopulmonary dysplasia (BPD). Rodent models involving neonatal exposure to excessive oxygen concentrations (hyperoxia) have helped to identify mechanisms of BPD-associated pathology. Genome-wide assessments of the effects of hyperoxia in neonatal mouse lungs could(More)
Immune modulation by the aryl hydrocarbon receptor (AhR) has been primarily studied using 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD). Recent reports suggest another AhR ligand, 6-formylindolo[3,2-b]carbazole (FICZ), exhibits distinct immunomodulatory properties, but side-by-side comparisons of these 2 structurally distinct, high-affinity ligands are(More)
High levels of oxygen (hyperoxia) are often used to treat individuals with respiratory distress, yet prolonged hyperoxia causes mitochondrial dysfunction and excessive reactive oxygen species (ROS) that can damage molecules such as DNA. Ataxia telangiectasia mutated (ATM) kinase is activated by nuclear DNA double strand breaks and delays hyperoxia-induced(More)
PURPOSE Supplemental oxygen (hyperoxia) used to treat individuals in respiratory distress causes cell injury by enhancing the production of toxic reactive oxygen species (ROS) and inhibiting mitochondrial respiration. The suppressor of morphogenesis of genitalia (SMG-1) kinase is activated during hyperoxia and promotes cell survival by phosphorylating the(More)
Stress during prenatal development is correlated with detrimental cognitive and behavioral outcomes in offspring. However, the long-term impact of prenatal stress (PS) and disrupted glucocorticoid signaling on bone mass and strength is not understood. In contrast, the detrimental effect of lead (Pb) on skeletal health is well documented. As stress and Pb(More)
Sequencing of a cadmium resistance operon from a Staphylococcus aureus ATCC12600 plasmid revealed that it is identical to a cadCA operon found in MRSA strains. Compared to plasmid-cured and cadC-mutant strains, cadC-positive ATCC12600 cells had increased resistance to cadmium (1 mg ml(-1) cadmium sulfate) and zinc (4 mg ml(-1) zinc sulfate), but not to(More)
  • 1