Emilio Salceda

Learn More
We have characterized the effects of BgII and BgIII, two sea anemone peptides with almost identical sequences (they only differ by a single amino acid), on neuronal sodium currents using the whole-cell patch-clamp technique. Neurons of dorsal root ganglia of Wistar rats (P5-9) in primary culture (Leibovitz's L15 medium; 37 degrees C, 95% air/5% CO2) were(More)
Conus californicus belongs to a genus of marine gastropods with more than 700 extant species. C. californicus has been shown to be distantly related to all Conus species, but showing unusual biological features. We report a novel peptide isolated from C. californicus with a significant inhibitory action over neuronal voltage-gated calcium channels. The new(More)
A new peptide toxin exhibiting a molecular weight of 5043Da (av.) and comprising 47 amino acid residues was isolated from the sea anemone Condylactis gigantea. Purification of the peptide was achieved by a multistep chromatographic procedure monitoring its strong paralytic activity on crustacea (LD(50) approx. 1microg/kg). Complete sequence analysis of the(More)
Sea anemones produce ion channels peptide toxins of pharmacological and biomedical interest. However, peptides acting on ligand-gated ion channels, including acid-sensing ion channel (ASIC) toxins, remain poorly explored. PhcrTx1 is the first compound characterized from the sea anemone Phymanthus crucifer, and it constitutes a novel ASIC inhibitor. This(More)
A program for action potential waveform analysis based on a PC compatible computer is described. Single or averaged action potentials are analyzed by obtaining its first derivative and using criteria which allow automatic measurement of several action potential components, including: depolarization rate, repolarization rate, amplitude, duration, resting(More)
CgNa (Condylactis gigantea neurotoxin) is a 47-amino-acid- residue toxin from the giant Caribbean sea anemone Condylactis gigantea. The structure of CgNa, which was solved by 1H-NMR spectroscopy, is somewhat atypical and displays significant homology with both type I and II anemone toxins. CgNa also displays a considerable number of exceptions to the(More)
We studied the effects of BgK toxin on outward K(+) currents in isolated neurons of the snail Helix aspersa, using the whole cell patch clamp technique. BgK partially and reversibly blocked K(+) currents in the 1 pM to 100 nM concentration range (n=53). The dose-response curve for BgK current inhibition had a maximum blocking effect at 100 nM. Our results(More)
We have characterized the actions of ApC, a sea anemone polypeptide toxin isolated from Anthopleura elegantissima, on neuronal sodium currents (I(Na)) using current and voltage-clamp techniques. Neurons of the dorsal root ganglia of Wistar rats (P5-9) in primary culture were used for this study. These cells express tetrodotoxin-sensitive (TTX-S) and(More)
Dendrotoxins are a group of peptide toxins purified from the venom of several mamba snakes. α-Dendrotoxin (α-DTx, from the Eastern green mamba Dendroaspis angusticeps) is a well-known blocker of voltage-gated K(+) channels and specifically of K(v)1.1, K(v)1.2 and K(v)1.6. In this work we show that α-DTx inhibited the ASIC currents in DRG neurons (IC50=0.8(More)
BACKGROUND Acid-sensing ion channels (ASICs) have a significant role in the sensation of pain and constitute an important target for the search of new antinociceptive drugs. In this work we studied the antinociceptive properties of the BM-21 extract, obtained from the sea grass Thalassia testudinum, in chemical and thermal models of nociception in mice. The(More)