Emilio Hernández-García

Learn More
We introduce a simple model of population dynamics which considers reproducing individuals or particles with birth and death rates depending on the number of other individuals in their neighborhood. The model shows an inhomogeneous quasistationary pattern with many different clusters of particles arranged periodically in space. We derive the equation for(More)
In this paper we extract the topology of the semantic space in its encyclopedic acception, measuring the semantic flow between the different entries of the largest modern encyclopedia, Wikipedia, and thus creating a directed complex network of semantic flows. Notably at the percolation threshold the semantic space is characterised by scale-free behaviour at(More)
Understanding the patterns and processes of diversification of life in the planet is a key challenge of science. The Tree of Life represents such diversification processes through the evolutionary relationships among the different taxa, and can be extended down to intra-specific relationships. Here we examine the topological properties of a large set of(More)
We study the properties of general Lotka-Volterra models with competitive interactions. The intensity of the competition depends on the position of species in an abstract niche space through an interaction kernel. We show analytically and numerically that the properties of these models change dramatically when the Fourier transform of this kernel is not(More)
A central model in theoretical ecology considers the competition of a range of species for a broad spectrum of resources. Recent studies have shown that essentially two different outcomes are possible. Either the species surviving competition are more or less uniformly distributed over the resource spectrum, or their distribution is 'lumped' (or 'clumped'),(More)
Many processes and models produce trees with depth scaling logarithmically with the number of leaves. Phylogenetic trees, describing the evolutionary relationships between biological species, are examples of trees for which such scaling is not observed. With this motivation, we analyze numerically two branching models leading to non-logarithmic depth(More)
We present properties of Lotka-Volterra equations describing ecological competition among a large number of interacting species. First we extend previous stability conditions to the case of a non-homogeneous niche space, i.e. that of a carrying capacity depending on the species trait. Second, we discuss mechanisms leading to species clustering and obtain an(More)
BACKGROUND One of the classical questions in evolutionary biology is how evolutionary processes are coupled at the gene and species level. With this motivation, we compare the topological properties (mainly the depth scaling, as a characterization of balance) of a large set of protein phylogenies with those of a set of species phylogenies. RESULTS The(More)
The identification of key populations shaping the structure and connectivity of metapopulation systems is a major challenge in population ecology. The use of molecular markers in the theoretical framework of population genetics has allowed great advances in this field, but the prime question of quantifying the role of each population in the system remains(More)
We study the spatial patterns formed by interacting populations or reacting chemicals under the influence of chaotic flows. In particular, we have considered a three-component model of plankton dynamics advected by a meandering jet. We report general results, stressing the existence of a smooth-filamental transition in the concentration patterns depending(More)