Emilio Hernández-García

Learn More
We introduce a simple model of population dynamics which considers reproducing individuals or particles with birth and death rates depending on the number of other individuals in their neighborhood. The model shows an inhomogeneous quasistationary pattern with many different clusters of particles arranged periodically in space. We derive the equation for(More)
A central model in theoretical ecology considers the competition of a range of species for a broad spectrum of resources. Recent studies have shown that essentially two different outcomes are possible. Either the species surviving competition are more or less uniformly distributed over the resource spectrum, or their distribution is 'lumped' (or 'clumped'),(More)
We present properties of Lotka-Volterra equations describing ecological competition among a large number of interacting species. First we extend previous stability conditions to the case of a non-homogeneous niche space, i.e. that of a carrying capacity depending on the species trait. Second, we discuss mechanisms leading to species clustering and obtain an(More)
In this paper we extract the topology of the semantic space in its encyclopedic acception, measuring the semantic flow between the different entries of the largest modern encyclopedia, Wikipedia, and thus creating a directed complex network of semantic flows. Notably at the percolation threshold the semantic space is characterised by scale-free behaviour at(More)
Clonal reproduction characterizes a wide range of species including clonal plants in terrestrial and aquatic ecosystems, and clonal microbes such as bacteria and parasitic protozoa, with a key role in human health and ecosystem processes. Clonal organisms present a particular challenge in population genetics because, in addition to the possible existence of(More)
We study the spatial patterns formed by interacting biological populations or reacting chemicals under the influence of chaotic flows. Multiple species and nonlinear interactions are explicitly considered, as well as cases of smooth and nonsmooth forcing sources. The small-scale structure can be obtained in terms of characteristic Lyapunov exponents of the(More)
Regular vegetation patterns in semiarid ecosystems are believed to arise from the interplay between long-range competition and facilitation processes acting at smaller distances. We show that, under rather general conditions, long-range competition alone may be enough to shape these patterns. To this end we propose a simple, general model for the dynamics(More)
Population dynamics of individuals undergoing birth and death and diffusing by short- or long-range two-dimensional spatial excursions (Gaussian jumps or Lévy flights) is studied. Competitive interactions are considered in a global case, in which birth and death rates are influenced by all individuals in the system, and in a nonlocal but finite-range case(More)
We study the properties of general Lotka-Volterra models with competitive interactions. The intensity of the competition depends on the position of species in an abstract niche space through an interaction kernel. We show analytically and numerically that the properties of these models change dramatically when the Fourier transform of this kernel is not(More)
The identification of key populations shaping the structure and connectivity of metapopulation systems is a major challenge in population ecology. The use of molecular markers in the theoretical framework of population genetics has allowed great advances in this field, but the prime question of quantifying the role of each population in the system remains(More)