Learn More
When the hand is displaced from an equilibrium posture by an external disturbance, a force is generated to restore the original position. We developed a new experimental method to measure and represent the field of elastic forces associated with posture of the hand in the horizontal plane. While subjects maintained a given posture, small displacements of(More)
A central issue in motor control is how the central nervous system generates the muscle activity patterns necessary to achieve a variety of behavioral goals. The many degrees of freedom of the musculoskeletal apparatus provide great flexibility but make the control problem extremely complex. Muscle synergies—coherent activations, in space or time, of a(More)
We investigated how human subjects adapt to forces perturbing the motion of their ams. We found that this kind of learning is based on the capacity of the central nervous system (CNS) to predict and therefore to cancel externally applied perturbing forces. Our experimental results indicate: (i) that the ability of the CNS to compensate for the perturbing(More)
In order to investigate the strategies used to plan and control multijoint arm trajectories, two-degrees-of-freedom arm movements performed by normal adult humans were recorded. Only the shoulder and elbow joints were active. When a subject was told simply to move his hand from one visual target to another, the path of the hand was roughly straight, and the(More)
Selecting the appropriate muscle pattern to achieve a given goal is an extremely complex task because of the dimensionality of the search space and because of the nonlinear and dynamical nature of the transformation between muscle activity and movement. To investigate whether the central nervous system uses a modular architecture to achieve motor(More)
The primary motor cortex (M1) is known to control motor performance. Recent findings have also implicated M1 in motor learning, as neurons in this area show learning-related plasticity. In the present study, we analyzed the neuronal activity recorded in M1 in a force field adaptation task. Our goal was to investigate the neuronal reorganization across(More)
We used a computational analysis to identify the basic elements with which the vertebrate spinal cord constructs one complex behavior. This analysis extracted a small set of muscle synergies from the range of muscle activations generated by cutaneous stimulation of the frog hindlimb. The flexible combination of these synergies was able to account for the(More)
Microstimulation of the gray matter of the frog's spinal cord was used to elicit motor responses. Force responses were recorded with the frog's ankle clamped while EMG activity was monitored. The collections of force patterns elicited at different leg configurations were summarized as force fields. These force fields showed convergence to an equilibrium(More)
Previous studies have suggested that the motor system may simplify control by combining a small number of muscle synergies represented as activation profiles across a set of muscles. The role of sensory feedback in the activation and organization of synergies has remained an open question. Here, we assess to what extent the motor system relies on centrally(More)