Emilija Veljkovic

Learn More
UNLABELLED System L amino acid transport is increased in various types of cancer. The tracer 123I-2-iodotyrosine (2IT), which is accumulated via system L, could thus serve to allow visualization of cancer in vivo. Here, we studied the transport of 125I-2IT by h4F2hc-hLAT1, the major transporter subserving system L in growing cells, using the Xenopus laevis(More)
Humans and other organisms are equipped with a set of responses that can prevent damage from exposure to a multitude of endogenous and environmental stressors. If these stress responses are overwhelmed, this can result in pathogenesis of diseases, which is reflected by an increased development of, e.g., pulmonary and cardiac diseases in humans exposed to(More)
Cigarette smoke causes lung tumorigenesis; however, the mechanisms underlying transformation are unknown. We investigated if tobacco compounds induce DNA promoter hypermethylation in BEAS-2B cells treated with low doses of cigarette smoke condensate (CSC) for one month. Transcriptional profiles and anchorage-independent growth were explored using Affymetrix(More)
Critical to advancing the systems-level evaluation of complex biological processes is the development of comprehensive networks and computational methods to apply to the analysis of systems biology data (transcriptomics, proteomics/phosphoproteomics, metabolomics, etc.). Ideally, these networks will be specifically designed to capture the normal,(More)
Towards the development of a systems biology-based risk assessment approach for environmental toxicants, including tobacco products in a systems toxicology setting such as the "21st Century Toxicology", we are building a series of computable biological network models specific to non-diseased pulmonary and cardiovascular cells/tissues which capture the(More)
The impact of cigarette smoke (CS), a major cause of lung diseases, on the composition and metabolism of lung lipids is incompletely understood. Here, we integrated quantitative lipidomics and proteomics to investigate exposure effects on lung lipid metabolism in a C57BL/6 and an Apolipoprotein E-deficient (Apoe(-/-)) mouse study. In these studies, mice(More)
Exposure to environmental stressors such as cigarette smoke (CS) elicits a variety of biological responses in humans, including the induction of inflammatory responses. These responses are especially pronounced in the lung, where pulmonary cells sit at the interface between the body's internal and external environments. We combined a literature survey with(More)
Mammalian heteromeric amino acid transporters (HATs) are composed of a multi-transmembrane spanning catalytic protein covalently associated with a type II glycoprotein (e.g. 4F2hc, rBAT) through a disulfide bond. Caenorhabditis elegans has nine genes encoding close homologues of the HAT catalytic proteins. Three of these genes (designated AAT-1 to AAT-3)(More)
The heteromeric amino acid transporter glycoprotein subunits rBAT and 4F2hc (heavy chains) form, with different catalytic subunits (light chains), functional heterodimers that are covalently stabilized by a disulphide bridge. Whereas rBAT associates with b(0,+)AT to form the cystine and cationic amino acid transporter defective in cystinuria, 4F2hc(More)
With the wealth of publications and data available, powerful and transparent computational approaches are required to represent measured data and scientific knowledge in a computable and searchable format. We developed a set of biological network models, scripted in the Biological Expression Language, that reflect causal signaling pathways across a wide(More)