Emilie Wientjes

Learn More
The mechanisms underlying the wavelength dependence of the quantum yield for CO(2) fixation (α) and its acclimation to the growth-light spectrum are quantitatively addressed, combining in vivo physiological and in vitro molecular methods. Cucumber (Cucumis sativus) was grown under an artificial sunlight spectrum, shade light spectrum, and blue light, and(More)
Time-resolved fluorescence on oligomers of the main light-harvesting complex from higher plants indicate that in vitro oligomerization leads to the formation of a weakly coupled inter-trimer chlorophyll-chlorophyll (Chl) exciton state which converts in tens of ps into a state which is spectrally broad and has a strongly far-red enhanced fluorescence(More)
The energy dissipation mechanism in oligomers of the major light-harvesting complex II (LHC II) from Arabidopsis thaliana mutants npq1 and npq2, zeaxanthin-deficient and zeaxanthin-enriched, respectively, has been studied by femtosecond transient absorption. The kinetics obtained at different excitation intensities are compared and the implications of(More)
LHCII, the most abundant membrane protein on earth, is the major light-harvesting complex of plants. It is generally accepted that LHCII is associated with Photosystem II and only as a short-term response to overexcitation of PSII a subset moves to Photosystem I, triggered by its phosphorylation (state1 to state2 transition). However, here we show that in(More)
The outer antenna of higher-plant PSI (Photosystem I) is composed of four complexes [Lhc (light-harvesting complex) a1-Lhca4] belonging to the light-harvesting protein family. Difficulties in their purification have so far prevented the determination of their properties and most of the knowledge about Lhcas has been obtained from the study of the in vitro(More)
The structural response of photosystem II (PSII) and its light-harvesting proteins (LHCII) in Arabidopis thaliana after long-term acclimation to either high or low light intensity was characterized. Biochemical and structural analysis of isolated thylakoid membranes by electron microscopy indicates a distinctly different response at the level of PSII and(More)
We have studied thylakoid membranes of Arabidopsis thaliana acclimated to different light conditions and have related protein composition to excitation energy transfer and trapping kinetics in Photosystem II (PSII). In high light: the plants have reduced amounts of the antenna complexes LHCII and CP24, the overall trapping time of PSII is only ∼180 ps, and(More)
In this work, Photosystem I supercomplexes have been purified from Lhca-deficient lines of Arabidopsis thaliana using a mild detergent treatment that does not induce loss of outer antennas. The complexes have been studied by integrating biochemical analysis with electron microscopy. This allows the direct correlation of changes in protein content with(More)
Plants are exposed to continuous changes in light quality and quantity that challenge the performance of the photosynthetic apparatus and have evolved a series of mechanisms to face this challenge. In this work, we have studied state transitions, the process that redistributes the excitation pressure between photosystems I and II (PSI/PSII) by the(More)
In this work we have investigated the origin of the multi-exponential fluorescence decay and of the short excited-state lifetime of Lhca4. Lhca4 is the antenna complex of Photosystem I which accommodates the red-most chlorophyll forms and it has been proposed that these chlorophylls can play a role in fluorescence quenching. Here we have compared the(More)