Emilie Tourneur

  • Citations Per Year
Learn More
Urinary tract infections (UTIs), which are mainly due to uropathogenic Escherichia coli (UPEC), occur via the retrograde ascent of the bacteria along the urinary tract system. The adhesion and invasion mechanisms of UPEC have been extensively studied in bladder epithelial cells, but less is known about the role of renal tubule epithelial cells (RTEC) in(More)
The intestinal tract is engaged in a relationship with a dense and complex microbial ecosystem, the microbiota. The establishment of this symbiosis is essential for host physiology, metabolism, and immune homeostasis. Because newborns are essentially sterile, the first exposure to microorganisms and environmental endotoxins during the neonatal period is(More)
The calcineurin/nuclear factor of activated T cells (NFATs) signaling pathway plays a central role in T cell mediated adaptive immune responses, but a number of recent studies demonstrated that calcineurin/NFAT signaling also plays a key role in the control of the innate immune response by myeloid cells. Calcineurin inhibitors, such as cyclosporine A (CsA)(More)
Acute pyelonephritis (APN), which is mainly caused by uropathogenic Escherichia coli (UPEC), is the most common bacterial complication in renal transplant recipients receiving immunosuppressive treatment. However, it remains unclear how immunosuppressive drugs, such as the calcineurin inhibitor cyclosporine A (CsA), decrease renal resistance to UPEC. Here,(More)
Urinary tract infections (UTIs) mainly due to uropathogenic Escherichia coli (UPEC) are one of the most frequent complications in kidney-transplanted patients, causing significant morbidity. However, the mechanisms underlying UTI in renal grafts remain poorly understood. Here, we analysed the effects of the potent immunosuppressive agent cyclosporine A(More)
  • 1