Emilie Landrieux

Learn More
While initiation of transcription by RNA polymerase III (Pol III) has been thoroughly investigated, molecular mechanisms driving transcription termination remain poorly understood. Here we describe how the characterization of the in vitro transcriptional properties of a Pol III variant (Pol IIIdelta), lacking the C11, C37, and C53 subunits, revealed crucial(More)
We examine here the mechanisms ensuring the fidelity of RNA synthesis by RNA polymerase III (Pol III). Misincorporation could only be observed by using variants of Pol III deficient in the intrinsic RNA cleavage activity. Determination of relative rates of the reactions producing correct and erroneous transcripts at a specific position on a tRNA gene,(More)
In this work, we determine that the Saccharomyces cerevisiae Ccr4-Not complex controls ubiquitination of the conserved ribosome-associated heterodimeric EGD (enhancer of Gal4p DNA binding) complex, which consists of the Egd1p and Egd2p subunits in yeast and is named NAC (nascent polypeptide-associated complex) in mammals. We show that the EGD complex(More)
Transcription factor TFIIIC is a multisubunit complex required for promoter recognition and transcriptional activation of class III genes. We describe here the reconstitution of complete recombinant yeast TFIIIC and the molecular characterization of its two DNA-binding domains, tauA and tauB, using the baculovirus expression system. The B block-binding(More)
The Ccr4-Not complex is a multifunctional regulatory platform composed of nine subunits that controls diverse cellular events including mRNA degradation, protein ubiquitination, and transcription. In this study, we identified the yeast Saccharomyces cerevisiae osmotic and oxidative stress transcription factor Skn7 as a new target for regulation by the(More)
The conserved multi-subunit Ccr4-Not complex regulates gene expression in diverse ways. In this work, we characterize the suppression of temperature sensitivity associated with a mutation in the gene encoding the scaffold subunit of the Ccr4-Not complex, NOT1, by the deletion of SPT3. We determine that the deletion of SPT3, but not the deletion of genes(More)
Rpa12p is a subunit of RNA polymerase I formed of two zinc-binding domains. The N-terminal zinc region (positions 1-60) is poorly conserved from yeast to man. The C-terminal domain contains an invariant Q.RSADE.T.F motif shared with the TFIIS elongation factor of RNA polymerase II and its archaeal counterpart. Deletions removing the N-terminal domain fail(More)
  • 1