Emilie Franceschini

Learn More
The analysis of the ultrasonic frequency-dependent backscatter coefficient of aggregating red blood cells reveals information about blood structural properties. The difficulty in applying this technique in vivo is due to the frequency-dependent attenuation caused by intervening tissue layers that distorts the spectral content of signals backscattered by(More)
Ultrasound characterization of erythrocyte aggregation (EA) is attractive because it is a non-invasive imaging modality that can be applied in vivo and in situ. An experimental validation of the Structure Factor Size Estimator (SFSE), a non-Rayleigh scattering model adapted for dense suspensions, was performed on 4 erythrocyte preparations with different(More)
Tissue-mimicking phantoms with high scatterer concentrations were examined using quantitative ultrasound techniques based on four scattering models: The Gaussian model (GM), the Faran model (FM), the structure factor model (SFM), and the particle model (PM). Experiments were conducted using 10- and 17.5-MHz focused transducers on tissue-mimicking phantoms(More)
A computer simulation study to produce ultrasonic backscatter coefficients (BSCs) from red blood cell (RBC) clusters is discussed. The simulation algorithm is suitable for generating non-overlapping, isotropic, and fairly identical RBC clusters. RBCs were stacked following the hexagonal close packing (HCP) structure to form a compact spherical aggregate.(More)
Ultrasonic backscatter coefficient (BSC) measurements were performed on K562 cell pellet biophantoms with cell concentrations ranging from 0.006 to 0.30 in the 10-42 MHz frequency bandwidth. Three scattering models, namely, the fluid-filled sphere model (FFSM), the particle model (PM), and the structure factor model (SFM), were compared for modeling the(More)
Quantitative ultrasound (QUS) techniques using radiofrequency (RF) backscattered signals have been used for tissue characterization of numerous organ systems. One approach is to use the magnitude and frequency dependence of backscatter echoes to quantify tissue structures. Another approach is to use first-order statistical properties of the echo envelope as(More)
Most breast cancers (85%) originate from the epithelium and develop first in the ductolobular structures. In screening procedures, the mammary epithelium should therefore be investigated first by the performing of an anatomically guided examination. For this purpose (mass screening, surgical guidance), we developed a two-dimensional anatomic phantom(More)
Three scattering models were examined for characterizing ex vivo canine livers and HT29 mouse tumors in the 10-38- and the 15-42-MHz frequency bandwidth, respectively. The spherical Gaussian model (SGM) and the fluid sphere model (FSM) that were examined are suitable for dealing with sparse media, whereas the structure factor model (SFM) is adapted for(More)