Emiliano Zamora

Learn More
Wine Saccharomyces cerevisiae strains producing a new killer toxin (Klus) were isolated. They killed all the previously known S. cerevisiae killer strains, in addition to other yeast species, including Kluyveromyces lactis and Candida albicans. The Klus phenotype is conferred by a medium-size double-stranded RNA (dsRNA) virus, Saccharomyces cerevisiae virus(More)
Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by Saccharomyces cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and(More)
Torulaspora delbrueckii can improve wine aroma complexity, but its impact on wine quality is still far from being satisfactory at the winery level, mainly because it is easily replaced by S. cerevisiae yeasts during must fermentation. New T. delbrueckii killer strains were selected to overcome this problem. These strains killed S. cerevisiae yeasts and(More)
Killer yeasts secrete protein toxins that are lethal to sensitive strains of the same or related yeast species. Among the four types of Saccharomyces killer yeasts already described (K1, K2, K28, and Klus), we found K2 and Klus killer yeasts in spontaneous wine fermentations from southwestern Spain. Both phenotypes were encoded by medium-size(More)
Winemaking with selected yeasts requires simple and cheap techniques to monitor the yeast population dynamics. We obtained new sulfometuron (smr) resistant mutants, easy to detect by replica-plate assay, from selected wine yeasts. The mutations were dominant and were located at the ilv2 locus that encodes for acetolactate synthase enzyme. The mutants were(More)
A low-cost procedure was designed for easy and rapid response-on-demand production of fresh wine yeast for local wine-making. The pilot plant produced fresh yeast culture concentrate with good microbial quality and excellent oenological properties from four selected wine yeasts. The best production yields were obtained using 2% sugar beet molasses and a(More)
Quick and accurate methods are required for the identification of industrial, environmental, and clinical yeast strains. We propose a rapid method for the simultaneous extraction of yeast mtDNA, nuclear DNA, and virus dsRNA. It is simpler, cheaper, and faster than the previously reported methods. It allows one to choose among a broad range of molecular(More)
The quality of traditional sparkling-wine depends on the aging process in the presence of dead yeast cells. These cells undergo a slow autolysis process thereby releasing some compounds, mostly colloidal polymers such as polysaccharides and mannoproteins, which influence the wine's foam properties and mouthfeel. Saccharomyces cerevisiae killer yeasts were(More)
  • 1