Emilia Sinderewicz

Learn More
BACKGROUND In the cow, lysophosphatidic acid (LPA) acts as an auto-/paracrine factor, through its receptors LPAR1-4, on oocytes and cumulus cells during in vitro maturation (IVM). The aim of the present work was to determine the effect of LPA during IVM of bovine oocytes on: 1) oocyte maturation; 2) apoptosis of COCs; 3) expression of genes involved in(More)
Lysophosphatidic acid (LPA) is a known cell signaling lipid mediator in reproductive tissues. In the cow, LPA is involved in luteal and early pregnancy maintenance. Here, we evaluated the presence and role of LPA in bovine early embryonic development. In relevant aspects, bovine embryos reflect more closely the scenario occurring in human embryos than the(More)
Lysophosphatidic acid (LPA) exerts various actions on the mammalian reproductive system. In cows, LPA stimulates the synthesis and secretion of luteotropic factors in the ovary, which affects the growth and development of ovarian follicles. The role of LPA in granulosa cells, oocyte and oocyte-cumulus complex (COC) has previously been investigated; but its(More)
The objective of the study was to examine the effect of lysophosphatidic acid (LPA) on 17β-estradiol (E2) synthesis and follicle stimulating hormone (FSH) action in bovine granulosa cells. We found that granulosa cells in the bovine antral follicle, in addition to the uterus and the CL, are also the site of LPA synthesis and the target for LPA action in the(More)
We examined the effects of LPA on TNFα and IFNγ - induced decrease of P4 synthesis and on the cytokine - induced apoptosis of the cultured luteal cells. In the steroidogenic luteal cells LPA reversed the inhibitory effect of TNFα and IFNγ on P4 synthesis and also inhibited the stimulatory effects of TNFα and IFNγ on the expression of Bax, TNFR1, Fas and(More)
Lysophosphatidic acid (LPA) together with its active G protein-coupled receptors are present in the corpus luteum (CL) of the cow. Under in vivo conditions, LPA stimulated P4 and PGE2 secretion during the luteal phase of the estrous cycle in heifers. Furthermore, LPA maintained P4 synthesis and actions in the bovine CL in vitro. However, the effect of this(More)
To determine whether glucocorticoids affect the function of the bovine corpus luteum (CL) during the estrous cycle and early pregnancy, we examined the effects of exogenous cortisol or reduced endogenous cortisol on the secretion of progesterone (P4) and on pregnancy rate. In preliminary experiments, doses of cortisol and metyrapone (an inhibitor of(More)
In order to study lysophosphatidic acid (LPA) signaling associated with type 1 endometrial carcinoma (EC), we evaluated the LPA receptors (LPARs), autotaxin (ATX) and phospholipase A2 (PLA2) expression in EC and normal endometrium with correlation to clinicopathological features. We investigated LPAR1, LPAR2, LPAR3, LPAR4, ATX and PLA2 expression at mRNA(More)
In cows, lysophosphatidic acid (LPA), which acts in an auto/paracrine manner, serves as a luteotropic factor during early pregnancy by stimulating progesterone and prostaglandin E2 secretion, thus protecting the bovine corpus luteum and early embryo development. Our hypothesis was that LPA exerted some local effects on the bovine endometrium prior to early(More)
BACKGROUND Lysophosphatidic acid (LPA) regulates reproductive processes in the cow. Ovarian granulosa cells play a pivotal role in follicle growth and development. Nevertheless, the role of LPA in the local regulation of granulosa cell function in different follicle categories in the bovine ovary has not been investigated. METHODS Ovarian follicles were(More)