Emilia Sinderewicz

Learn More
We examined the effects of LPA on TNFα and IFNγ - induced decrease of P4 synthesis and on the cytokine - induced apoptosis of the cultured luteal cells. In the steroidogenic luteal cells LPA reversed the inhibitory effect of TNFα and IFNγ on P4 synthesis and also inhibited the stimulatory effects of TNFα and IFNγ on the expression of Bax, TNFR1, Fas and(More)
Lysophosphatidic acid (LPA) is a known cell signaling lipid mediator in reproductive tissues. In the cow, LPA is involved in luteal and early pregnancy maintenance. Here, we evaluated the presence and role of LPA in bovine early embryonic development. In relevant aspects, bovine embryos reflect more closely the scenario occurring in human embryos than the(More)
BACKGROUND In the cow, lysophosphatidic acid (LPA) acts as an auto-/paracrine factor, through its receptors LPAR1-4, on oocytes and cumulus cells during in vitro maturation (IVM). The aim of the present work was to determine the effect of LPA during IVM of bovine oocytes on: 1) oocyte maturation; 2) apoptosis of COCs; 3) expression of genes involved in(More)
Lysophosphatidic acid (LPA) through activating its G protein-coupled receptors (LPAR 1-6) exerts diverse cellular effects that in turn influence several physiological processes including reproductive function of the female. Studies in various species of animals and also in humans have identified important roles for the receptor-mediated LPA signaling in(More)
  • 1