Learn More
Bicarbonate transporters are the principal regulators of pH in animal cells, and play a vital role in acid-base movement in the stomach, pancreas, intestine, kidney, reproductive system and central nervous system. The functional family of HCO3- transporters includes Cl- -HCO3- exchangers, three Na+/HCO3- cotransporters, a K+/HCO3- cotransporter, and a(More)
We have used pH-, Na-, and Cl-sensitive microelectrodes to study basolateral HCO3- transport in isolated, perfused proximal tubules of the tiger salamander Ambystoma tigrinum. In one series of experiments, we lowered basolateral pH (pHb) from 7.5 to 6.8 by reducing [HCO3-]b from 10 to 2 mM at a constant pCO2. This reduction of pHb and [HCO3-]b causes a(More)
We have used pH-, Na-, and Cl-sensitive microelectrodes to study basolateral HC03 transport in isolated, perfused proximal tubules of the tiger salamander Ambystoma tigrinum. In one series of experiments, we lowered baso-lateral pH (pHb) from 7.5 to 6.8 by reducing [HCO3] ]b from 10 to 2 mM at a constant pCO2. This reduction of pHb and [HCO3] ]b causes a(More)
Two electroneutral, Na+-driven HCO3- transporters, the Na+-driven Cl-/HCO3- exchanger and the electroneutral Na+/HCO3- cotransporter, have crucial roles in regulating intracellular pH in a variety of cells, including cardiac myocytes, vascular smooth-muscle, neurons and fibroblasts; however, it is difficult to distinguish their Cl- dependence in mammalian(More)
Electrogenic cotransport of Na+ and HCO-3 is a crucial element of HCO-3 reabsorption in the renal proximal tubule (PT). An electrogenic Na+-HCO-3 cotransporter (NBC) has recently been cloned from salamander and rat kidney. In the present study, we generated polyclonal antibodies (pAbs) to NBC and used them to characterize NBC on the protein level by(More)
The transport of chloride across the Necturus proximal tubule cell was studied in the doubly-perfused kidney using conventional, chloride-sensitive and pH-sensitive microelectrodes. Lowering chloride activity in the basolateral solution results in a reduction in intracellular Cl- activity (aiCl). This reduction in aiCl is inhibited by removing either HCO-3(More)
The electrophysiology of the renal Na-K ATPase was studied in isolated perfused amphibian proximal tubules during alterations in bath (serosal) potassium. Intracellular and extracellular ionic activity measurements permitted continuous evaluation of the Nernst potentials for Na+, K+, and Cl- across the basolateral membrane. The cell membrane and(More)
Apical nonselective cation channels with an average single-channel conductance of 34 +/- 2.3 pS were found in M-1 mouse cortical collecting duct cells. Channel activity is increased by depolarization and abolished by cytoplasmic calcium removal. Cytoplasmic application of 0.1 mM cGMP decreases channel open probability by 27%. cDNAs corresponding to(More)
Isolated renal cortical collecting tubules obtained from rabbits treated chronically with desoxycorticosterone acetate (DOCA) have been found to possess elevated transepithelial potential differences and a greatly increased capacity for ion transport. Structural exmination of tubules from rabbits exposed to either DOCA or dexamethasone for 11--18 d reveals(More)
Functional coupling of Na+,K+-ATPase pump activity to a basolateral membrane (BLM) K+ conductance is crucial for sustaining transport in the proximal tubule. Apical sodium entry stimulates pump activity, lowering cytosolic [ATP], which in turn disinhibits ATP-sensitive K+ (KATP) channels. Opening of these KATP channels mediates hyperpolarization of the BLM(More)