Emile J. Hasan

Learn More
Signaling via p38 MAP kinase has been implicated in the mechanotransduction associated with mechanical stress and ventilator-induced lung injury (VILI). However, the critical downstream mediators of alveolar injury remain incompletely defined. We provide evidence that high-tidal volume mechanical ventilation (HVt MV) rapidly activates caspases within the(More)
Xanthine oxidoreductase (XOR) plays a prominent role in acute lung injury because of its ability to generate reactive oxygen species. We investigated the role of XOR in ventilator-induced lung injury (VILI). Male C57BL/6J mice were assigned to spontaneous ventilation (sham) or mechanical ventilation (MV) with low (7 ml/kg) and high tidal volume (20 ml/kg)(More)
RATIONALE Inducible nitric oxide synthase (iNOS) has been implicated in the development of acute lung injury. Recent studies indicate a role for mechanical stress in iNOS and endothelial NOS (eNOS) regulation. OBJECTIVES This study investigated changes in lung NOS expression and activity in a mouse model of ventilator-induced lung injury. METHODS(More)
The coagulation system is central to the pathophysiology of acute lung injury. We have previously demonstrated that the anticoagulant activated protein C (APC) prevents increased endothelial permeability in response to edemagenic agonists in endothelial cells and that this protection is dependent on the endothelial protein C receptor (EPCR). We currently(More)
Mechanical ventilation, a fundamental therapy for acute lung injury, worsens pulmonary vascular permeability by exacting mechanical stress on various components of the respiratory system causing ventilator associated lung injury. We postulated that MK2 activation via p38 MAP kinase induced HSP25 phosphorylation, in response to mechanical stress, leading to(More)
AIM To test the hypothesis that PI3K/Akt/eNOS signaling has a protective role in a murine model of ventilation associated lung injury (VALI) through down-regulation of p38 MAPK signaling. METHODS Male C57BL/J6 (wild-type, WT) or eNOS knockout mice (eNOS(-/-)) were exposed to mechanical ventilation (MV) with low (LV(T), 7 mL/kg) and high tidal volume(More)
Raja-Elie E. Abdulnour, Xinqi Peng, Jay H. Finigan, Eugenia J. Han, Emile J. Hasan, Konstantin G. Birukov, Sekhar P. Reddy, James E. Watkins III, Usamah S. Kayyali, Joe G. N. Garcia, Rubin M. Tuder, and Paul M. Hassoun Division of Pulmonary and Critical Care Medicine, Department of Medicine, Department of Environmental Health Sciences, Bloomberg School of(More)
  • 1